1. Fill out the table below.

Substance	Molecular mass (amu)	Molar mass M	Number of moles in 100 g of the substance
$\mathrm{H}_{2} \mathrm{O}$	18 amu	$18 \mathrm{~g} / \mathrm{mole}$	5.6 moles
CaO			
C			
Cu			
Cl			
Cl_{2}			
Cl^{-}			
KMnO_{4}			
$\mathrm{H}_{2} \mathrm{SO}_{4}$			
CuO			
$\mathrm{K}_{2} \mathrm{O}$			
CH_{4}			

2. Write down chemical reaction of methane burning $\left(\mathrm{CH}_{4}\right.$ reaction with $\left.\mathrm{O}_{2}\right)$ with formation of carbon dioxide and water. Balance it and answer the following questions:
a. How many moles of carbon dioxide form from 1 mole methane?
b. How many grams of carbon dioxide form from 100 g of methane?
c. How many moles of oxygen are needed to burn 1 mole of methane?
d. How many grams of oxygen is needed to burn 100 g of methane?
e. How many liters of carbon dioxide form from 100 g of methane under normal conditions?
f. How many moles of water will form from 60 moles of methane?
g. How many grams of water will form from burning 60 g of methane?
h. How many grams of water will form from burning 22.4 liters of methane?
