Hydrogen

1. Hydrogen in the lab is often obtained with the following reaction:

$$
\mathrm{Zn}+2 \mathrm{HCl}=\mathrm{H}_{2}+\mathrm{ZnCl}_{2}
$$

Calculate how many grams of zinc is needed to obtain 1.12 L of hydrogen under normal conditions. (Firstly, calculate how many moles of hydrogen are in 1.12 L under normal conditions (One mole of each gas has a volume of 22.4 L). Then, using the balanced reaction above, calculate the mass of zinc needed to form these number of moles of hydrogen.)
2. 23 g of Na reacted with 1018 ml of water.
a. How many grams of NaOH are dissolved in 1 L of the solution?
b. How many liters of hydrogen did form?

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2}+2 \mathrm{NaOH}
$$

(Firstly, figure out how many grams of water reacted with 23 grams of Na to form NaOH (assume $1 \mathrm{~g} / \mathrm{ml}$ water density). The remaining (non-reacted water) will form the solution of NaOH . The calculations of NaOH mass and the volume of hydrogen are straight forward using the above equation and the fact that the volume of 1 mole of each gas is 22.4 L under normal conditions.)

