The mole, molar gas volume, Clapeyron-Mendeleev equation

- To calculate masses of products and reactants using $\underline{\text { balanced chemical equations we use a unit }}$ called mole. One mole of a substance is the amount whose mass equals the molecular or atomic weight (in atomic mass units, amu) of the substance expressed in grams. This means that molecular weight of any substance in amu (from periodic table) is equal to molar weight in grams.
- A mole of anything has 6.022×10^{23} particles. This is called Avogadro's number, after Amedeo Avogadro, who first suggested that equal volumes of gas have equal numbers of molecules.
- 1 mole of any gas takes a volume of 22.4 liters at "normal conditions ". This is a molar gas volume under the normal conditions. Normal conditions are temperature of $0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and pressure of $1 \mathrm{~atm}(101325 \mathrm{~Pa}$)
- For conditions that differ from normal we use Clapeyron-Mendeleev equation:
$\mathrm{pV}=\mathrm{nRT}$
n - gas mole number
p - gas pressure (atm)
V - gas volume (liters)
T - temperature (K)
R - gas constant ($0.0821 \mathrm{I} \times$ atm $/$ mole $\times \mathrm{K}$)
Redox chemical reactions can be balances by looking at the transfer of electrons:
$\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$

$4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$

1. Insert the missing equation coefficients:
? $\mathrm{Mg}+\mathrm{O}_{2}=2 \mathrm{MgO}$
? $\mathrm{Fe}+3 \mathrm{Cl}_{2}=$? FeCl_{3}
? $\mathrm{Al}+$? $\mathrm{S}=\mathrm{Al}_{2} \mathrm{~S}_{3}$
$? \mathrm{Cu}+? \mathrm{O}_{2}=$? CuO
$\mathrm{P}+\mathrm{N}_{2} \mathrm{O}=\mathrm{N}_{2}+\mathrm{P}_{2} \mathrm{O}_{5}$ (use the electron balance and show your work)
$\mathrm{NH}_{3}+\mathrm{O}_{2}=\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$ (use electron balance and show your work)
2. What number of moles of $\mathrm{Cr}(52 \mathrm{amu})$ is in 20.8 g of this metal?
3. What is the mass of 6.02×10^{23} molecules of methane CH_{4} ?
4. 4 g of hydrogen $\left(\mathrm{H}_{2}\right)$ were mixed with 64 g of oxygen $\left(\mathrm{O}_{2}\right)$. The mixture exploded forming water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Write down the equation of the chemical reaction. Balance it! How many grams of water did form? How many grams of oxygen remained unreacted?
5. Write down a reaction between magnesium and oxygen with the formation of magnesium oxide. How many grams of magnesium and how many liters of oxygen will be necessary to obtain 50 g of magnesium oxide?
6. There are 180 g of water in a glass. How many molecules are there? How many moles?
7. A steel container with the volume of 40 L is filled with hydrogen under a pressure of 60 atm and at a temperature of $25^{\circ} \mathrm{C}$. How many moles of hydrogen are in the container? How many grams? What volume this hydrogen will take under normal conditions?
