1. Replace the question marks below to obtain correct chemical equations:

$$
\begin{aligned}
& \mathrm{Ca}+2 \mathrm{HCl}=\mathrm{Ca} " ? "+\mathrm{H}_{2} \uparrow \\
& 2 \mathrm{Mg}+" ? "=2 \mathrm{MgO} \\
& 2 \mathrm{H}_{2} " ? "+3 \mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2} \\
& \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2}=2 \mathrm{Fe}+3 " ? " \mathrm{O} \\
& \mathrm{CaCl}_{2}+2 \mathrm{NaOH}=\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{Na} " ? "
\end{aligned}
$$

The mole, molar gas volume, Clapeyron-Mendeleev equation

- To calculate masses of products and reactants using balanced chemical equations we use a unit called mole. One mole of a substance is the amount whose mass equals the molecular or atomic weight (in atomic mass units, amu) of the substance expressed in grams. This means that molecular weight of any substance in amu (from periodic table) is equal to molar weight in grams.
- A mole of anything has 6.022×10^{23} particles. This is called Avogadro's number, after Amedeo Avogadro, who first suggested that equal volumes of gas have equal numbers of molecules.
- 1 mole of any gas takes a volume of 22.4 liters at "normal conditions ". This is a molar gas volume under the normal conditions. Normal conditions are temperature of $0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and pressure of 1 atm (101325 Pa)
- For conditions that differ from normal we use Clapeyron-Mendeleev equation:
$\mathrm{pV}=\mathrm{nRT}$
n - gas mole number
p - gas pressure (atm)
V - gas volume (liters)
T - temperature (K)
R - gas constant (0.0821 I x atm/mole $\times K$)

2. What volume will 56 g of nitrogen gas $\left(\mathrm{N}_{2}\right)$ occupy under normal conditions?
3. What volume will 80 g of gas argon will occupy under normal conditions?
4. There are 6.72 L of oxygen in an oxygen bag under normal conditions. How many grams of oxygen is there? How many moles of oxygen?
5. What is the density of $\mathrm{H}_{2} \mathrm{~S}$ gas in g / L under normal conditions?
6. There is hydrogen gas in a $40-\mathrm{L}$ gas tank under 60 atm at $25^{\circ} \mathrm{C}$. How many moles of hydrogen are in the tank? How many grams? What volume will this hydrogen take under normal conditions?
