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Combinatorics – inclusion-exclusion formula

It is well known that if we have two finite sets A,B, then

|A ∪B| = |A|+ |B| − |A ∩B|

(where |A| is the number of elements in A).
One can generalise it to three sets:

|A ∪B ∪ C| =|A|+ |B|+ |C|
− |A ∩B| − |A ∩ C| − |B ∩ C|
+ |A ∩B ∩ C|

It turns out that there is a similar formula for any number of sets:

|A1 ∪A2 ∪ · · · ∪An| =|A1|+ · · ·+ |An|
− |A1 ∩A2| − . . . (all possible pairwise intersections)

+ |A1 ∩A2 ∩A3|+ . . . (all possible triple intersections)

. . .

This formula is called inclusion-exclusion formula

1. (a) Prove inclusion-exclusion formula for 3 sets.
(b) Prove inclusion-exclusion fromula for n sets. [Hint: if an element is exactly one of these sets,

how many times will it be counted in the right-hand side of inclsuion-exclusion formula? what
if it is in exactly 2 sets?... ]

2. How many integers are there between 1 and 16500 which are not divisible by neither 3 nor 5? What
about integers which are not divisible by either of 3, 5, 11?

3. How many ways there are to put 15 different toys in 4 boxes so that each box contains at least
one toy? [Hint: let Ai, i = 1 . . . 4, be the set of those arrangements where box i is empty. Then
A1 ∪A2 ∪A3 ∪A4 are those arrangements where at least one box is empty. ]

4. Inclusion-exclusion formula has an analog where finite sets are replaced by figures in the plane and
number of elements is replaced by area (we assume that all figures are nice enough so that notion of
area makes sense and all areas are finite). State and prove this analog.

5. Inside a rectangle of area 1 we have 5 figures F1, . . . , F5, each of which has area 0.5. Prove the
following:
(a) You can choose two of these figures so that their intersection has area at least 3/20.
(b) You can choose two of these figures so that their intersection has area at least 1/5.
(c) You can choose three of these figures so that their intersection has area at least 1/20.

6. A professor wrote 30 letters to his colleagues, and prepared 30 envelopes with their addresses. How-
ever, he was very much preoccupied with a theorem he was trying to prove and was not paying much
attention to anything else, so he put the letters in the envelopes at random.

What is the probability that at least one letter was placed in the correct envelope?
[This is a famous problem which appears in many forms; it seems that it was first proposed in 1708

by a French mathematician Pierre Rémond de Montmort who called it “the problem of coincidences”.
A highly unexpected result is that if we replace 30 by n and ask how the probability behaves as n
grows, it approaches a limit – and this limit is neither 0 nor 1. Many famous mathematicians worked
on questions related to this problem, including Bernoulli, de Moivre, and Euler.]



*7. (For those who have solved all previous problems)
We color all integer numbers between 1 and 1 000 000 using one of two colors, black and white.

Initially all numbers are black. You are allowed to perform the following operation: chose a number
n (between 1 and 1 000 000) and switch colors of n and all integers that have a common divisor > 1
with n.

Prove that using this operation, you can make all numbers white.


