

Ohm's Law

$$V = I \cdot R$$

- V is Voltage Drop, the Potential Difference between two ends of a wire (or resistor, light bulb etc). Measured in Volts [V]
- I is **Electric Current**, the total charge flowing through the wire in 1 sec. Measured in **Amperes [A]** (Coulomb per second): **1A=1C/s**
- R is Resistance of the wire. Measured in Ohms $[\Omega]$. $1\Omega=1V/A$

Serial and Parallel Circuits

Serial:

- Currents are the same: I₁=I₂
- Voltage is added: V= V₁+V₂

Parrallel:

- Currents are added: $I=I_1+I_2$
- Voltages are the same: V₁=V₂

Homework

Problem 1

An electric heater is made out of a piece of wire with resistance R= 10 Ω , plugged into a standard 110V outlet. Find the current through this wire, and the overall power of this heater (remember that Power=V*I).

Problem 2

Two resistors , 10 Ω and 20 Ω are connected to a 1.5V battery in parallel. Sketch the circuit, and find the total current flowing via the battery.

You want to replace these two resistors with a single one, so that the current stays the same. How large should be its resistance?