Work and Kinetic Energy

Starting with the $2^{\text {nd }}$ Newton's Law:

$$
F=m a
$$

One can derive another important result:
"Change in kinetic energy is equal to the mechanical work done by all forces"

$$
\Delta K=W
$$

$$
\begin{array}{ll}
K=\frac{m v^{2}}{2}, & \text { is called Kinetic Energy of an object } \\
W=F \Delta x, & \text { is called Mechanical Work }
\end{array}
$$

(Work = Force x Displacement)

Homework

Problem 1. How much work has to be done to accelerate a car from speed $0 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$? Mass of the car is 2000 kg .

Problem 2. A driver in the car from Problem 1 applies breaks. Friction force acting on the car is 10 kN . Find the distance that the car will travel before coming to a complete stop (its speed was $30 \mathrm{~m} / \mathrm{s}$).

