Math 3 Classwork 16

Warm Up

1 a) Insert brackets to the following number sentences to make the equality correct.

$$
5 \times 154+46=1000
$$

b) Compare:
$28+\mathrm{b} _28+(\mathrm{b}+1)$
$28+\mathrm{b} _\quad 28+(\mathrm{b}-1)$
$32+1 _32+(1+2)$
$43-(c+4) _43-c$
$32-\mathrm{x} _$_ $32-(\mathrm{x}-2)$
$58-(\mathrm{p}-6) \ldots 58-\mathrm{p}$
2
How many rectangles are there in the picture? List them
all: \qquad

3 Rank the children of the age line:

- Angie is older than Arthur
- Bob is younger than Katie
- Carl is the oldest
- Artur is older than Katie

Homework Review

4 Below is a drawing of a straight angle $\angle \mathrm{BAE}$ (remember that a straight angle is always 180°). The angle \angle DAE equals 75° and the angle $\angle B A C=25^{\circ}$.
a) Find an angle $\angle C A D=$ \qquad
b) Find an angle $\angle B A D=$ \qquad
a) Find an angle $\angle C A E=$ \qquad

Calculate:

New Material I

Multiplication and division are inverse operations.

It means that if we take a number and multiply it by another number and then divide the result by the same number, we will end up with our initial number.

$$
11 \times 2 \div 2=11 \quad 34 \times 9 \div 9=34 \quad 52 \div 26 \times 26=52
$$

Analyze the operations and undo them to solve the equation:
6

How to solve equations with division.

To solve for x the following equation: $5 x=25$, we have to "undo" multiplying by 5 . So, we have to divide BOTH part of equation (this is an equation, remember?) by 5 .
$5 x \div 5=25 \div 5 \quad$ and we get $\quad x=5$
Let's check our work (always do it!): $5 \times x=25$, using the solution we found, we write:
$5 \times 5=25$ or $25=25$! Our solution is correct.

7 Solve the equations (use drawings):

\boldsymbol{x}	\times	7	-	2	2	$=$	4	1	
\boldsymbol{x}	\times	7	$=$	4	1	+			
\boldsymbol{x}	\times	7	$=$						
\boldsymbol{x}	$=$								
\boldsymbol{x}	$=$								

y	$:$	4	+	2	1	$=$	2	7	

Solve for x and check your answer:
a) $8 \div x=4$
b) $x \div 20=2$
c) $x \times 12=48$

Children were making bracelets. To make 4 bracelets, they need 80 beads, the same number for each bracelet. How many beads do they need to make 5 bracelets?
a) Julia and Victoria had 24 candies and they decided to equally divide all candies between two of them. How many candies did each girl get? \qquad
b) Then Jonathan came and asked girls to share their candies with him as well. Girls decided to share all 24 candies equally between 3 of them. Is it possible? How many candies will each child get? \qquad
c) Then Eli joined them and asked to give him some candies as well. Girls were very kind and decided to share all 24 candies equally between 4 of them. Is it possible? How many candies will each child get? \qquad
d) And then Steven and Milan came and ... asked for candies! Now girls have to share their 24 candies with 6 children. Is it possible? How many candies will each child get?
\qquad
11
Mark the order of operations and calculate:
(1) 2
$24: 6 \times 2=$ \qquad

$$
8 \times 3+5 \times 4=
$$ $43+20-5=$ \qquad $18+3: 3=$ \qquad

$(18+3): 3=$ \qquad $36:(13-4)=$ \qquad

REVIEW I

12 Calculate using correct units:

$$
\begin{array}{lll}
1 \mathrm{~kg} \times 4= & 1 \mathrm{~m} \times 7= & 1 \mathrm{egg} \times 4= \\
3 \mathrm{l} \times 3= & 1 \mathrm{sec} \times 6= & 10 \mathrm{mg} \times 3=
\end{array}
$$

13 Find all pairs of supplementary angles on the drawing. Measure these angle down your results. Make sure supplementary angles add up to 180°. If $\angle \mathrm{AOB}=50^{\circ}$ then $\angle \mathrm{BOD}=$ \qquad

14
Choose the correct sketch for each problem, use them
 and write the expressions:
a) There are 5 eggs in a basket. There are beggs in another basket. How many eggs are in both baskets?
\qquad
b) There are 5 eggs in each of b baskets. How many eggs are in all these baskets?

REVIEW II

Quadrilateral

A Quadrilateral has four-sides, it is 2-dimensional (a flat shape), closed (the lines join up), and has straight sides.

A quadrilateral that has 2 parallel sides is called trapezoid.
What is the difference between the trapezoid II and the quadrilaterals III, IV, V, and VI? How many parallel sides do these quadrilaterals have?
A quadrilateral that is formed by 2 pairs of the parallel sides is called a parallelogram.
Examine the picture below. What is the difference between the quadrilateral IV and the parallelogram III? How are the sides related to each other?
A parallelogram with 4 equal sides is called rhombus.
Is there a parallelogram that has only 3 equal sides? Why, or why not?
Examine the picture below. What is the difference between the quadrilaterals V and VI and the other quadrilaterals on the picture? What kind of angles do they have?

Quadrilateral
A four-sided polygon.

The sum of the angles of a quadrilateral is 360° degrees.

Square
A four-sided polygon with equal-length sides meeting at right angles.

The sum of the angles of a square is 360° degrees

Rectangle

A four-sided polygon with all right angles

The sum of the angles of a rectangle is 360° degrees

Parallelogram

A four-sided polygon with two pairs of parallel sides.
\square

The sum of the angles of a parallelogram is 360° degrees

Rhombus

A four-sided polygon with all four sides of equal length

The sum of the angles of a rhombus is 360° degrees

Trapezoid

A four-sided polygon with an exactly one pair of parallel sides. The two sides that are parallel are called the bases of the trapezoid.

The sum of the angles of a trapezoid is 360° degrees

What shape am I?
15
a) four sides; all sides equal; four right angles
b) four sides; opposite sides equal; four right angles \qquad
c) four sides; opposite sides parallel; no right angles \qquad
d) four sides; exactly two sides parallel \qquad
e) four sides; opposite sides equal; no sides perpendicular \qquad
f) four sides; opposite sides parallel; adjacent sides perpendicular
g) four sides; all sides equal; no sides perpendicular \qquad
h) four sides; no sides parallel; no sides perpendicular \qquad

Challenge Yourself

Solve each word problem:
a) A line segment was split into 8 parts. Each part was further split into 5 sections. How many sections was the segment split into?
b) A watermelon can be balanced on a scale by \boldsymbol{x} apples. An apple can be balanced by \boldsymbol{q} strawberries. How many strawberries are needed to balance a watermelon?

