
Translational symmetry. Area.

Math 2 Classwork 20

Lesson 20			Tra	nslati	ional	symi	netry	. Are	ea.			
Find the exar has translatio							eal lit	fe. A	brick	wall		
						TE \						
Find the orde	r of rotati	ional s	ymmetr	y of t	he oc	tagon	on th	ne pic	ture.			
How many li a) 1 b) 2 Pentominoes	c) 3	d) 10		ı circl infini		e?						
chitominoes	o y mineti	L y										
Draw the l	ines of s	symm	etry	Dro	aw th	ne lin	es of	[:] sym	met	ry		
Order of rotation symmetry?				Draw the lines of symmetry Order of rotation symmetry?								
								,			•	
Draw the l	lines of a	symm	otry	Dre	 +h	l ne lin	l os of		met			
			-					-		-		
Order of r		Symm	erry?		Jel, 0	of rot	u110	n syr	innet	ry e		

New Material II

Area and units of area

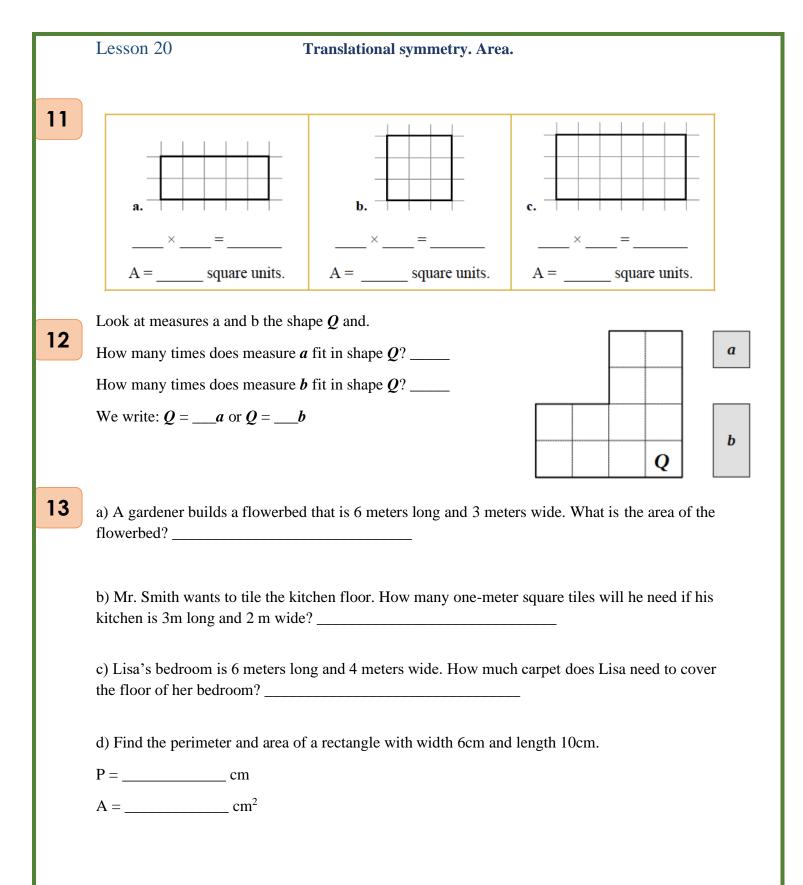
Perimeter measures the distance around the shape. To calculate a perimeter, we simply add the lengths of all sides of a polygon.

Area measures how much surface is covered by a particular object or figure.

The square with a side of one unit is used as a unit of measure for area.

Every unit of **length** has a corresponding unit of area.

Thus, areas can be measured in square meters (m²), square centimeters (cm²), square millimeters (mm²), square kilometers (km²), square feet (ft²), square yards (yd²), square miles (mi²), and so forth.


All the dimensions must be in the same units.

Two sheets of paper have twice the area of a single sheet, because there is twice as much space to write on.

Different shapes have different ways to find the area. For example, in a rectangle we find the area by multiplying the length times the width. In the rectangle on the right, the area is 2×3 or 6. If you count the small squares you will find there are 6 of them.

a)
$$2 \times 3 = 6$$
 b) $3 \times 2 = 6$

10

