Find straight lines and line segments. Trace the line segments with your pencil. Do they intersect? Extend the lines using a ruler and mark the intersections points.
Are there parallel lines? What are their names? \qquad

2 Continue pattern - add 4 more rectangles.

a) How many points are marked on each line? -
b) How many points are marked on all 3 lines? -

c) Draw 3 straight lines and place 3 points on each line in such a way that you will get a total 6 points. Hint: lines can intersect.

Fill in the missed numbers in the brackets:
a) $643=(\quad)+(\quad)+(\quad)$
b) $300+30+3=(\quad)$
c) $302=(\quad)+(\quad)+(\quad)$
d) $900+0+9=(\quad)$

Complete the number patterns:
a) \qquad , \qquad , 20, 25, \qquad , \qquad
b) 46,48 , \qquad , \qquad
c) \qquad , 123, 223, \qquad , 423

Find the correct time (you may use a real clock to help you):
a) It is $2: 30 \mathrm{pm}$ now. In one hour, it will be \qquad
b) It is $2: 30 \mathrm{pm}$ now. In 10 minutes, it will be \qquad
c) It is $2: 30$ pm now. Two hours ago, it was \qquad

7 Calculate writing each problem in the columns (Don't forget to write ones under ones, etc.)
a) $324+81+4=$
b) $402+109+30=$
c) $299+101+55=$
8. Remember the triangular numbers? Answer the following questions:
a) How many more bricks are there in the larger stack?
b) How many bricks should be added if you add one additional layer of the bricks? \qquad

Fill the missing numbers into the tables.

+	9	5	4
6			
8			
7			

+		5	8
8		13	
			17
12	19		

+	6		
	12		
14		35	
42			72

a) Draw a line segment $\overline{A B}$.

Draw another line segment $\overline{C D}$ in a way that the intersection between $\overline{A B}$ and $\overline{C D}$ is a point K .
b) Draw a line segment $\overline{A B}$ again below. Draw another line segment $\overline{E F}$ in a way that the intersection between $\overline{A B}$ and $\overline{E F}$ is a line segment $\overline{E B}$.

