

<u>The valence</u> is the number of electron pairs that binds the atom with other atoms

Element	Valence	Element	Valence
Н	I	Ba	II
Na	Ι	0	II
K	I	Zn	II
Ag	I	Sn	II (IV)
F	I	Pb	II (IV)
Cl	I(III,V,	Fe	II, III
	VII)		
Br	I (III, V,	Cr	III, VI
	VII)		
I	I (III, V,	S	II, IV, VI
	VII)		
Hg	I, II	Al	III
Cu	I, II	N	III (IV)
Be	II	Р	III, V
Mg	II	С	IV
Ca	II	Si	IV (II)

The oxidation state, which may be positive, negative or zero, is the hypothetical charge that an atom would have if all bonds to atoms of different elements were 100% <u>ionic</u>, with no <u>covalent</u> component.

Element	Electronegativity	Element	Electronegativity
Cs	0.79	Н	2.20
K	0.82	С	2.55
Na	0.93	S	2.58
Li	0.98	I	2.66
Ca	1.00	Br	2.96
Mg	1.31	N	3.04
Be	1.57	Cl	3.16
Si	1.90	0	3.44
B	2.04	F	3.98
Ρ	2.19		

Molecular geometry

Valence shell electron pair repulsion (VSEPR) theory

- Molecular geometry is the 3D arrangement of atoms within a molecule
- Chemical bonds and unbonded electron pairs or single electrons in a molecule repel, so they try to stay as far as possible from each other.
 - The repulsion between unbound electrons (u.e.) is stronger than repulsion between bound electrons (b.e.). The repulsion decreases in the row:

(u.e. / u.e. > u.e. / b.e. > b.e. /b.e.)

Linear combination of atomic orbitals (LCAO) – hybridization 1. sp hybridization

В

2. sp² hybridization

2. sp³ hybridization

Let's consider ₁₆S

 $2H + S = H_2S$ $2O + S = SO_2$ $3O + S = SO_3$

This class uses the materials from the following books: Larry Gonick and Graig Criddle "The cartoon guide to chemistry" Manyuilov and Rodionov "Chemistry for children and adults" Kuzmenko, Eremin, Popkov "Beginnings of chemistry"