MATH 8: ASSIGNMENT 26

Inverses in modular arithmetic

Recall that we say that t is inverse of $a \bmod n$ if $a t \equiv 1 \bmod n$.
Theorem. A number a has an inverse mod n if and only if a is relatively prime with n, i.e. $\operatorname{gcd}(a, n)=1$.
If a has an inverse $\bmod n$, then we can easily solve equations of the form

$$
a x \equiv b \quad \bmod n
$$

Namely, just multiply both sides by inverse of a.

Least common multiple

Theorem. Let a, b be relatively prime. Then any common multiple of a, b is a multiple of ab; in particular, the least common multiple of a, b is $a b$.

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem). Let a, b be relatively prime. Then, for any choice of k, l, the following system of congruences:

$$
\begin{array}{lc}
x \equiv k & \bmod a \\
x \equiv l & \bmod b
\end{array}
$$

has a unique solution mod ab, i.e. it has solutions and any two solutions differ by a multiple of ab. In particular, there exists exactly one solution x such that $0 \leq x<a b$.

Homework

1. Find all solutions of the system

$$
\begin{array}{ll}
x \equiv 4 & \bmod 9 \\
x \equiv 5 & \bmod 11
\end{array}
$$

2. Find all solutions of the system

$$
\begin{array}{ll}
x \equiv 5 & \bmod 7 \\
x \equiv 9 & \bmod 30
\end{array}
$$

3. The theory of biorhythms suggests that one's emotional and physical state is subject to periodic changes: 23 -day physical cycle and a 28 -day emotional cycle. (This is a highly dubious theory, but for this problem, let us accept it.) Assuming that for a certain person January 1st, 2021 was the first day of both cycles, how many days will it take for him to achieve top condition on both cycles (which happens on 6 th day of 23 -day cycle and 7 th day of 28 -day cycle)? When will be the next time he achieves top condition in both cycles? (Note: first day is day 1 , not day 0 !)
4. (a) Show that for any number a which is not divisible by 5 , we have $a^{4} \equiv 1 \bmod 5$. [For now, you can just do it by testing all possible remainders mod 5 ; next time, we will learn how to do that without testing each possibility.]
(b) Show that for any number a which is not divisible by 7 , we have $a^{6} \equiv 1 \bmod 7$.
(c) Show that for any number a which is not divisible by 5 or 7 , we have $a^{12} \equiv 1 \bmod 35$. [Hint: use Chinese remainder theorem!]
(d) Show that for any $a, a^{13} \equiv a^{25} \equiv a \bmod 35$.
5. (a) Prove that for any integer x, we have $x^{5} \equiv x \bmod 30$
(b) Prove that if integers x, y, z are such that $x+y+z$ is divisible by 30 , then $x^{5}+y^{5}+z^{5}$ is also divisible by 30 .
