MATH 5 CLASSWORK 23

May 9, 2021

We discussed today the product rule:

$P(A) = \frac{\text{number of outcomes giving A}}{\text{total number of possible outcomes}}$

Product rule

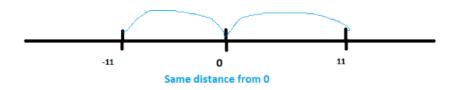
We already discussed computing probabilities for a single event/action such as rolling a die. Now let us consider what happens when we have more then one action.

Question: we roll a die twice. What is the probability of getting 2 on the first roll and 3 on the second?

Solution: rolling a die twice gives us a pair of numbers, each from 1 to 6. We will write the pairs like this: (2;3). We need to compute how many such pairs are there. The easiest way is to arrange them in a table like this:

(1;1)	(1;2)	(1;3)	(1;4)	(1;5)	(1;6)
(2;1)	(2;2)				(2;6)
(3;1)	(3;2)				(3;6)
(4;1)	(4;2)				(4;6)
(5;1)	(5;2)				(5;6)
(6;1)	(6;2)				(6;6)

There are 6 rows and 6 columns, so there are $6 \cdot 6 = 36$ possible pairs. Therefore, the probability of getting any one of them (e.g., (2; 3)) is $\frac{1}{36}$.


This gives the following multiplication rule for probabilities: if we are doing two tests then the probability of getting result A in the first test and B in the second one is

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

if A and B can't happen together. This rule only applies if A and B do not happen together.

Example of solving equation with absolute value:

$$|7x - 3| = 11$$


```
May 9, 2021
```

1. Compute:

a.
$$\frac{2^{1001}3^{999}}{6^{1000}} = 2^{?}3^{?}$$

b. $3^{7} + 3^{7} + 3^{7} = 3^{?}$

- 2. Write as Decimals: 101010b, 11100011b
- 3. Write 35
 - a. As binary
 - b. In base 4
 - c. in base 13
- 4.
- 5. Solve equations:

a)
$$\frac{3}{8}x = \frac{1}{3}$$
 b) $|12x - 5| = 9$ c) $\frac{x-2}{x-1} = 3$

6. Simplify:

$$\frac{6^{5} \cdot 2^{4}}{3^{5} \cdot 2^{2}} = \frac{42^{2}}{6^{2}} = \frac{9^{2} \cdot 2^{4}}{6^{2}} = \sqrt{\frac{4^{2}}{5^{10}}} = \sqrt{12} =$$

- 7. Open parenthesis, simplify.
 - d. $(2x 3)^2 =$
 - e. (4x-5)(4x+5) =

f.
$$3(a-5) - 2(2a-9) =$$

8.

Find the length of legs, if hypotenuse is 10?

- 9. You are fidgeting with a coin. What is the probability to get
 - a. TTH?
 - b. TTT?
 - c. at least one T (i.e. everything, but HHH)?