1. Remove parenthesis and simplify:

$$(y-3)\cdot (y+2) =$$

$$(y + 3) \cdot (y - 2) =$$

$$(y-3) \cdot (y-2) =$$

$$(2y + 3) \cdot (3y - 1) =$$

2. Find lines of symmetry in the 2D shapes below:

3. Solve equations in your notebooks:

a)
$$|2x + 3| = 1$$

b)
$$\frac{1}{1-\frac{5}{x}} = 2$$

b)
$$x = 10$$

4. Color or shade congruent triangles same way:

5. Use a compass to find points C_1 and C_2 located 5 cm from point A and 6 cm from point B.

 $\overset{ullet}{A}$

Can you find any other point that fits both conditions?

B

6. Use table to help to plot graphs for y = |x + 2| and y = |x - 1|. Construct continuous lines for each graph. Find and plot *symmetry lines* for these graphs.

X	-7	- 5	-3	-1	0	1	3	5	7	9
у										

x	-7	-5	-3	-1	0	1	3	5	7	9
у										

Find rotational axes and planes of symmetry in the 3D shapes below:

