1. Vector \vec{v} presents motion of the plane occurring each second.

Initially a triangle is located at the position $\triangle \boldsymbol{A}_{0} \boldsymbol{B}_{0} \boldsymbol{C}_{0}$

Find $\triangle \boldsymbol{A}_{1} \boldsymbol{B}_{1} \boldsymbol{C}_{\mathbf{1}}$, the position of the original triangle after 1 second.

Find $\triangle A_{2} B_{2} C_{2}$, the position of the original triangle after 2 seconds.
2. Plot the mirror image of the shape.

Congruency.

Sometimes points of two shapes can be matched in such a way that the distance between any two points is equal the distance between the two matching points.

Such two shapes are called congruent.

3. Plot $\triangle A_{2} B_{2} C_{2}$ produced by stretching $\triangle A_{1} B_{1} C_{1}$ twice together with the plane so that for every point \boldsymbol{X}_{1} and its image $\boldsymbol{X}_{2}: \quad \bar{O}_{2}=2 \bar{O}_{1}$

Find \boldsymbol{D}_{2} matching \boldsymbol{D}_{1}.
3. Show that the two shapes on the drawing are not congruent.
4. When are two circles congruent?

Squares:

a product of a number and itself is called its square: $\quad \boldsymbol{w}^{2}=\boldsymbol{w} \cdot \boldsymbol{w}$

5. Remove parenthesis:
$2 \cdot(x+1)=$ \qquad
$2 \cdot(x-1)=$ \qquad
$2 x \cdot(x+1)=$ \qquad
$x \cdot(2 x+1)=$ \qquad
$3 x \cdot(2 x+1)=$ \qquad
$x \cdot(x+1)=$ \qquad
$x \cdot(x-1)=$ \qquad
$2 x \cdot(x-1)=$ \qquad
$x \cdot(2 x-1)=$ \qquad
6. Fill in the table to plot a graph of the function:

x	1	2	3	4	5
y					

