1. Subtracting a sum: $\boldsymbol{a}-\boldsymbol{(b + c})=\boldsymbol{a}-\boldsymbol{b}-\boldsymbol{c}$
$55-(\boldsymbol{a}+5)=$ \qquad
$21-2 \cdot(x+1)=$ \qquad
$2 x-(y+x)=$ \qquad

$21-2 \cdot(x-1)=$ \qquad
2. Simplify and solve the equation: $2 x+2 \times(3 x-1)=2$

Review Circle:

A circle is a set of all points located on a given distance (radius) from its center!
3. Construct appropriate circles to answer the questions.

Plot $\boldsymbol{q}=\operatorname{Circ}(\boldsymbol{X}, 5)$
Compare:
$|A X| \square 5$
$|\boldsymbol{B X}| \square 5$
$|\boldsymbol{C X}| \square 5$
$|\boldsymbol{D X}| \square 5$

Find all points of the circle q located
 on the same distance from point \boldsymbol{A} as point \boldsymbol{X}.

Negative coefficients in equations $a x+b=c$:
4. Analyze and undo operations in the following equations:
$3+\mathbf{x}=12$
$3 x+6=12$

$12-x=3$

$12-6 x=3$

5. Solve world problems on joint productivity:

A. An old robot can pack 20 boxes in an hour. A newer model can pack 30 boxes in the same time.

How long will it take an old robot to pack 180 boxes? \qquad

How long will it take a new robot to pack 180 boxes? \qquad

How long will it take the two robots to pack 180 boxes if they work together?
\qquad
\qquad
B. An old printer prints 50 pages per minute. A new printer prints 100 pages per minute.

How long will it take an old printer to print 300 pages? \qquad

How long will it take a new printer to print 300 pages? \qquad

How long will it take both printers to print 300 pages if they work together?

Intersecting Circles

Plot WX

1. Plot $\boldsymbol{a}=\operatorname{Circ}(\boldsymbol{X}, 8 \mathrm{~cm})$
2. Plot $\boldsymbol{b}=\operatorname{Circ}(\boldsymbol{X}, 7 \mathrm{~cm})$
3. Plot $\boldsymbol{c}=\operatorname{Circ}(\boldsymbol{X}, 6 \mathrm{~cm})$
4. Plot $\boldsymbol{d}=\operatorname{Circ}(\boldsymbol{X}, 5 \mathrm{~cm})$
5. Plot $\boldsymbol{e}=\operatorname{Circ}(\boldsymbol{X}, 4 \mathrm{~cm})$
6. Plot $\boldsymbol{f}=\operatorname{Circ}(\boldsymbol{X}, 41 / 2 \mathrm{~cm})$

Consider the family of concentric circles $\boldsymbol{a}, \boldsymbol{b}, \ldots \boldsymbol{f}$
What happens to the location of the intersection points of the circle q and the circles from the concentric family?

Is there a circle around point X that has only 1 intersection point with circle \boldsymbol{q} ?

