1. Remove parentheses and simplify:
a). $(2 x-4): 4+\left(\frac{1}{2} x+\frac{2}{3}\right) \cdot 3=$ \qquad
b). $\left(\frac{3}{4}-x\right) \cdot 2+\left(x+\frac{1}{6}\right) \cdot 3=$ \qquad
2. Multiply:
$1 \times 1=$
$1 \times(-1)=$
$(-1) \times 1=$
$(-1) \times(-1)=$
$3 \times 5=$
$3 \times(-5)=$
$(-3) \times 5=$
$(-3) \times(-5)=$
3. Solve the equations:
$\frac{2}{5} x=\frac{1}{15}$
$\frac{1}{3} x+\frac{1}{3}=\frac{1}{2}$
$\frac{5}{16}-\frac{y}{5}=\frac{1}{4}$
4. Cross out the equations that are impossible to solve, and solve the rest:
$|y+2|=4$

$$
|y+2|=-4
$$

$$
|x-3|=-1
$$

$$
|x-3|=1
$$

6. What exactly is the area of a curvy shape?

$2 \times \frac{1}{4}=$
$\frac{1}{10} \times \frac{1}{2}=$
$\frac{1}{5} \times \frac{1}{6}=$
2 : $\frac{1}{4}=$
$\frac{1}{10}: \frac{1}{2}=$
$\frac{1}{5}: \frac{1}{6}=$
$2 \times \frac{1}{5}=$
$\frac{1}{10}: \frac{1}{6}=$
$\frac{1}{12}: \frac{1}{4}=$
2: $\frac{1}{5}=$
$\frac{1}{10} \times \frac{1}{6}=$
$\frac{1}{12} \times \frac{1}{4}=$
8. Negative numbers in atoms:

Atoms contain positive protons and negative electrons. A proton has an electric charge $\mathbf{+ 1}$. An electron has an electric charge $\mathbf{- 1}$. Atoms do not have net electric charges since the numbers of electrons and protons are equal. Electrons can be added to atoms or removed from atoms. This way atoms acquire a charge becoming ions.
A. Complete the table:
Symbol Protons Neutrons Electrons
B. Complete the table:

Symbol	Protons	Electrons	Electric charge
O	8	8	
O^{2-}	8		-2
Na	11		0
Na^{+}	11	7	0
N	7		-3
$\mathrm{~N}^{3-}$	12		0
$\mathrm{Mg}^{\mathrm{Mg}}$			+2
Mg^{2+}	12		

C. Calculate resulting electric charges
$\mathrm{Fe}-2 \mathrm{e} \rightarrow \mathrm{Fe}^{+2}$
$0-(-1) \times 2=2$
$\mathrm{Ag}-1 \mathrm{e} \rightarrow$ \qquad
\qquad
$\mathrm{O}+2 \mathrm{e} \rightarrow$ \qquad
\qquad
\qquad
\qquad
$\mathrm{N}^{+4}+2 \mathrm{e} \rightarrow$ \qquad

