MATH 10

ASSIGNMENT 24: LAGRANGE'S THEOREM
 MAY 2, 2021

Summary of past results

Definition. Let G be a group. A subgroup of G is a subset $H \subset G$ which is itself a group, with the same operation as in G. In other words, H must be

1. closed under multiplication: if $H_{1}, h_{2} \in H$, then $h_{1} h_{2} \in H$
2. contain the group unit e
3. for any element $h \in H$, we have $h^{-1} \in H$.

An example of a subgroup is the cyclic subgroup generated by an element of a group: if $a \in G$, then the set

$$
H=\left\{a^{n} \mid n \in \mathbb{Z}\right\} \subset G
$$

is a subgroup. (Note that n can be negative).

LAGRANGE THEOREM

The main result of today is Lagrange theorem:
Theorem. If G is a finite group, and H is a subgroup, then $|H|$ is a divisor of $|G|$, where $|G|$ is the number of elements in G (also called the order of G).

Proof. For an element $g \in G$, recall the notation $g H=\{g h, h \in H\}$; such subsets are called H-cosets. It was proved in the last homework that

- Each coset has exactly $|H|$ elements.
- Two cosets either coincide or do not intersect at all.

Thus, if there are k distinct cosets, then the total number of elements in them is $k|H|$, so $|G|=k|H|$.
Corollary. Let G be a finite group, and let $a \in G$. Let n be the smallest positive integer such that $a^{n}=1$ (this number is called the order of a). Then n is a divisor of $|G|$.

Proof. Let H be the cyclic subgroup generated by a; then $|H|=n$, so the result follows from Lagrange theorem.

1. Prove that if G is a finite group, then for any $x \in G$ we have $x^{|G|}=e$.
2. Describe all subgroups in the group \mathbb{Z}_{10}.
3. Let \mathbb{Z}_{n}^{*} (note the star!) be the set of all remainders $\bmod n$ which are relatively prime to n; for example, $\mathbb{Z}_{12}^{*}=\{1,5,7,11\}$. Show that then \mathbb{Z}_{n}^{*} is a a group with respect to multiplication.
4. Prove that if $a \in \mathbb{Z}$ is relatively prime with n, then $a^{\varphi(n)} \equiv 1 \bmod n$, where $\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|$ (it is called the Euler function). Hint: use the previous problem and problem 1.

Deduce from this Fermat's little theorem: if p is prime, then for any $a \in \mathbb{Z}$ we have $a^{p} \equiv a \bmod p$.

