Work and Kinetic Energy

Starting with the $2^{\text {nd }}$ Newton's Law:

$$
F=m a
$$

One can derive another important result:
"Change in kinetic energy is equal to the mechanical work done by all forces"

$$
\Delta K=W
$$

$$
\begin{array}{ll}
K=\frac{m v^{2}}{2}, & \text { is called Kinetic Energy of an object } \\
W=F \Delta x, & \text { is called Mechanical Work }
\end{array}
$$

(Work = Force x Displacement)

Potential Energy

Work by done by gravity depends only on initial and finite height h
$W_{g r a v i t y}=-m g \Delta h$
therefore,
$\Delta K=-\Delta m g h+W_{\text {not gravity }}$
$U=m g h \quad$ is called Potential Energy
$\Delta(K+U)=W_{\text {not gravity }}$
Therefore, if there is no forces other than gravity (no friction, engine or other external force), Total Energy (Kinetic + Potential) is conserved:

$$
E=K+U=\text { const }
$$

$\Delta E=W_{\text {not gravity }}$

Energy Conservation and Change

Homework

Problem 1 A bobsleigh goes down the track whose initial point is at height $\boldsymbol{h}=\mathbf{1 5 0} \mathbf{m}$. If there were no friction and no air resistance during the descend, find the distance \boldsymbol{d} that bobsleigh had to travel after the finish line, before coming to a complete stop. Coefficient of kinetic friction on that horizontal part of the trip is $\mu=0.5$.

Problem 2 A cart without any motor or other external source of energy is moving with a constant speed $v=2 \mathrm{~m} / \mathrm{s}$ on a flat road. At some point, it climbs up a ramp of height $\mathrm{h}=15$ $\mathrm{cm}(0.15 \mathrm{~m})$, and continues moving on a flat road. What is its speed at that moment, if no energy is lost?

