Acceleration

• Acceleration:

 $a = \frac{\text{change in velocit y}}{\text{change in time}} = \frac{\Delta v}{\Delta t}$

Standard units of acceleration : m/s²

 If there were no air resistance, all objects in Earth gravity would fall with the same acceleration, g=9.81 m/s²

(directed downward)

Galileo Galilei's experiment in Pisa (possibly, a legend)

Homework

Problem 1. An ball is thrown vertically upwards with initial speed v_0 =30m/s. Gravitational acceleration is $g = 9.81 \text{ m/s}^2$, and is directed downward. What will be the velocity of the ball after time t=4s?

Problem 2. A car of length L=4.0m is moving on a road. Its position is determined by three photogates (like we did in class): Gate 1. Gate 2 and Gate 3. The table below shows the time moments at which each of gates gets blocked and unblocked (t_1 and t_2), in seconds:

GATE #	t ₁ ,s (gate blocked)	t ₂ ,s (gate unblocked)	v, m/s
Gate 1	0.000	0.120	
Gate 2	5.210	5.300	
Gate 3	7.070	7.140	

- a) Find the speed of the car at the moments when it passed each gate, and fill the blanks in the table.
- b) Find accelerations of the car when it travels between Gates 1 and 2, and Gates 2 and 3
- c) Estimate the distances between Gates 1,2 and 3.