International System of Units (SI)

Basic SI units:				
Meter	Second	Kilogram	Kelvin	Mole
m	s	kg	K	mol

$$
F=m a
$$

Force, Newton
$1 N=1 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}$

$$
\downarrow=\frac{F}{A}
$$

Pressure, Pascal

$$
1 P a=1 \frac{N}{m^{2}}=1 \frac{k g}{m \cdot s^{2}}
$$

Work \& Energy, Joule

$$
1 J=1 \mathrm{~N} \cdot \mathrm{~m}=1 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}
$$

Power, Watt

$$
1 W=1 \frac{\mathrm{~J}}{\mathrm{~s}}=1 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{3}}
$$

Homework

Use dimensional analysis to find the speed of sound in air at room temperature. It may depend on the following parameters (pick three that look relevant):

- Universal gas constant: $\mathrm{R}=8.1 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$;
- Absolute temperature: T=300 K
- Molar mass or air: $\mathrm{m}=29 \mathrm{~g} / \mathrm{mol}=0.029 \mathrm{~kg} / \mathrm{mol}$
- Gravitational constant: $\mathrm{G} \approx 6.7 \cdot 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{s}^{2} \cdot \mathrm{~kg}\right)$

Remember that Joule $\mathrm{J}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$; 'mol' is mole, and ' K ' is degree Kelvin.

