MATH 9
 ASSIGNMENT 27: EULER'S FUNCTION

APRIL 26TH, 2020

Summary of previous results

Theorem. If two integers a, b, are relatively prime, then there exist $x, y \in \mathbb{Z}$ such that

$$
a x+b y=1
$$

Corollary: an congruence class $[a] \in \mathbb{Z}_{n}$ is invertible if and only if a is relatively prime with n. Chinese Remainder Theorem:

Theorem. Let m, n be relatively prime. Then for any k, l, the system of congruences

$$
\begin{array}{lc}
x \equiv k & \bmod m \\
x \equiv l & \bmod n
\end{array}
$$

has a solution, and any two solutions differ by a multiple of mn.

Fermat's little Theorem

Let us take a number and start computing its powers modulo some prime p. For example, computing powers of $2 \bmod 5$, we get:

$$
2,2^{2}=4,2^{3}=8=3,2^{4}=3 \cdot 26=1,2^{5}=2
$$

and after this, the values will be repeating periodically, with period 4 (since $2^{4} \equiv 1$, we get $\left.2^{k+4} \equiv 2^{k} \cdot 2^{4} \equiv 2^{k}\right)$.
It turns out that this is a general phenomenon: powers will always begin repeating periodically, and we can even say what the period is

Theorem (Fermat's little theorem). Let p be a prime number and let a be a number which is not divisible by p. Then $a^{p-1} \equiv 1 \bmod p$.
Proof. First, we write down the multiples of a up to $(p-1) a$: $\{a, 2 a, 3 a, \ldots,(p-1) a\}$. Since none of these numbers are divisible by p all the multiples are congruent to $\{1,2,3, \ldots,(p-1)\}$. Also, no two of the numbers $\{a, 2 a, 3 a, \ldots,(p-1) a\}$ are congruent, since $g c d(a, p)=1, k a \equiv j a \bmod m$ means that $k \equiv j \bmod m$. We can now write

$$
\begin{equation*}
a \cdot 2 a \cdot 3 a \cdots(p-1) a \equiv 1 \cdot 2 \cdot 3 \cdots(p-1) \quad \bmod p \tag{1}
\end{equation*}
$$

after canceling all common factors

$$
\begin{equation*}
a^{p-1} \equiv 1 \quad \bmod p \tag{2}
\end{equation*}
$$

Note that the theorem doesn't claim that $k=p-1$ is the smallest power of a which is congruent to 1 . For example, for $p=7$, Fermat's little theorem claims that $a^{6} \equiv 1$, but one easily sees that for $a=2$, we have $2^{3} \equiv 1$. Still the theorem is true: 2^{6} is also congruent to 1 .

Euler's function

If n is not prime, it is not true that $a^{n-1} \equiv 1 \bmod n$ for any a not divisible by n. Instead, the result needs to be modified.

Definition. Euler's function of n is defined by

$$
\varphi(n)=\text { number of remainders modulo } n \text { which are relatively prime to } n \text {. }
$$

For example, if $n=p$ is prime, then any nonzero remainder $\bmod p$ is relatively prime to p, so $\varphi(p)=p-1$. Generalization of Fermat's little theorem to this case is called Euler's theorem:

Theorem. If a is relatively prime to n, then $a^{\varphi(p)} \equiv 1 \bmod n$. In particular, for prime p, we have $a^{p-1} \equiv 1$ $\bmod p$ for any a not divisible by p.

Homework

1. Prove that for a prime p, one has $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$. Compute $\varphi(128) ; \varphi(125) ; \varphi(10) ; \varphi(12)$.
2. Compute the last digit of 2003^{280}
3. Compute the last digit of $7^{\left(7^{7}\right)}$
4. Compute the remainder $2^{2170} \bmod 1001$. (Hint: do you remember the factorization of 1001?)
5. Compute the last two digits of 2011^{970}.
6. Use Chinese remainder theorem to prove that if m, n are relatively prime, then $\varphi(m n)=\varphi(m) \varphi(n)$. [Hint: a is relatively prime with the product $m n$ iff it is relatively prime with m and also relatively prime with n.]
7. Use results of the previous problem to write a general formula for $\varphi(n)$, where $n=p_{1}^{k_{1}} \ldots p_{m}^{k_{m}}$. Find $\varphi(15) ; \varphi(100) ; \varphi(1001) ; \varphi(240) ; \varphi(30000) ; \varphi(96)$.
