MATH 9 ASSIGNMENT 27: EULER'S FUNCTION APRIL 26TH, 2020

SUMMARY OF PREVIOUS RESULTS

Theorem. If two integers a, b, are relatively prime, then there exist $x, y \in \mathbb{Z}$ such that

ax + by = 1.

Corollary: an congruence class $[a] \in \mathbb{Z}_n$ is invertible if and only if a is relatively prime with n. Chinese Remainder Theorem:

Theorem. Let m, n be relatively prime. Then for any k, l, the system of congruences

$$x \equiv k \mod m$$

 $x\equiv l \mod n$

has a solution, and any two solutions differ by a multiple of mn.

FERMAT'S LITTLE THEOREM

Let us take a number and start computing its powers modulo some prime p. For example, computing powers of 2 mod 5, we get:

2,
$$2^2 = 4$$
, $2^3 = 8 = 3$, $2^4 = 3 \cdot 26 = 1$, $2^5 = 2$,

and after this, the values will be repeating periodically, with period 4 (since $2^4 \equiv 1$, we get $2^{k+4} \equiv 2^k \cdot 2^4 \equiv 2^k$).

It turns out that this is a general phenomenon: powers will always begin repeating periodically, and we can even say what the period is

Theorem (Fermat's little theorem). Let p be a prime number and let a be a number which is not divisible by p. Then $a^{p-1} \equiv 1 \mod p$.

Proof. First, we write down the multiples of a up to (p-1)a: $\{a, 2a, 3a, \ldots, (p-1)a\}$. Since none of these numbers are divisible by p all the multiples are congruent to $\{1, 2, 3, \ldots, (p-1)\}$. Also, no two of the numbers $\{a, 2a, 3a, \ldots, (p-1)a\}$ are congruent, since gcd(a, p) = 1, $ka \equiv ja \mod m$ means that $k \equiv j \mod m$. We can now write

(1)
$$a \cdot 2a \cdot 3a \cdots (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdots (p-1) \mod p$$

after canceling all common factors

(2) $a^{p-1} \equiv 1 \mod p$

Note that the theorem doesn't claim that k = p - 1 is the smallest power of a which is congruent to 1. For example, for p = 7, Fermat's little theorem claims that $a^6 \equiv 1$, but one easily sees that for a = 2, we have $2^3 \equiv 1$. Still the theorem is true: 2^6 is also congruent to 1.

EULER'S FUNCTION

If n is not prime, it is not true that $a^{n-1} \equiv 1 \mod n$ for any a not divisible by n. Instead, the result needs to be modified.

Definition. Euler's function of n is defined by

 $\varphi(n)$ = number of remainders modulo *n* which are relatively prime to *n*.

For example, if n = p is prime, then any nonzero remainder mod p is relatively prime to p, so $\varphi(p) = p - 1$. Generalization of Fermat's little theorem to this case is called Euler's theorem:

Theorem. If a is relatively prime to n, then $a^{\varphi(p)} \equiv 1 \mod n$. In particular, for prime p, we have $a^{p-1} \equiv 1 \mod p$ for any a not divisible by p.

Homework

- 1. Prove that for a prime p, one has $\varphi(p^k) = p^k p^{k-1}$. Compute $\varphi(128)$; $\varphi(125)$; $\varphi(10)$; $\varphi(12)$.
- **2.** Compute the last digit of 2003^{280}
- **3.** Compute the last digit of $7^{(7^7)}$
- 4. Compute the remainder $2^{2170} \mod 1001$. (Hint: do you remember the factorization of 1001?)
- 5. Compute the last two digits of 2011^{970} .
- 6. Use Chinese remainder theorem to prove that if m, n are relatively prime, then $\varphi(mn) = \varphi(m)\varphi(n)$. [Hint: *a* is relatively prime with the product mn iff it is relatively prime with *m* and also relatively prime with *n*.]
- 7. Use results of the previous problem to write a general formula for $\varphi(n)$, where $n = p_1^{k_1} \dots p_m^{k_m}$. Find $\varphi(15)$; $\varphi(100)$; $\varphi(1001)$; $\varphi(240)$; $\varphi(30000)$; $\varphi(96)$.