MATH 8: FINAL TEST

1. Compute $(2 x+y)^{7}-(2 x-y)^{7}$. Use binomial theorem.
2. A full house is a collection of five cards in poker that consists of a three-of-a-kind and a two-of-a-kind. Calculate the number of possible full houses that one can make from a standard 52 card deck.
3. Prove: $\neg(p \Rightarrow q) \Leftrightarrow(p \wedge \neg q)$.
4. Write the following statements using logic connectives and quantifiers:
(a) All linguists know mathematics
(b) Some linguists don't know mathematics
(c) No one but a linguist likes mathematics

Please use the following notation:

- P - set of all people
- $L(x)-x$ is a linguist
- $M(x)-x$ loves mathematics

5. Prove that $A B C D$ is a parallelogram if and only if its diagonals bisect each other. [Do not forget you need to provide two proofs!]
6. Given triangle $\triangle A B C$, complete a straightedge-compass construction of a circle that passes through A, B, C (circumscribed circle).
7. Given triangle $\triangle A B C$, complete a straightedge-compass construction of a circle that touches sides of the triangle (inscribed circle).
8. Find an inverse of $9(\bmod 13)$. Use Euclid's algorithm.
9. Find the solution of the following equation in whole numbers: $11 x+19 y=2$.
10. Solve the following system of congruences:

$$
\begin{array}{ll}
x \equiv 3 & (\bmod 13) \\
x \equiv 5 & (\bmod 9)
\end{array}
$$

