MATH 8: HANDOUT 24 DIVISIBILITY VII: CHINESE REMAINDER THEOREM

We have by now discussed congruences mod m, for positive integer m, and we have defined the notion of invertibility of residues mod m (for reference, a remainder mod m is sometimes called a residue mod m). What about noninvertibility?

Theorem. If m is a composite number such that $m=a b$ for integers $a, b>1$, then there exist non-invertible residues (or remainders) modulo m.

Proof. We prove that a factor of m is noninvertible $\bmod m$. To see this, the equation $a x \equiv 1 \bmod m$ has no solution because a is not relatively prime to m; i.e., $\operatorname{gcd}(a, m)=a$, thus $a x=1+b y$ is equivalent to finding x, y such that $a x-b y=1$, which is impossible. So a is noninvertible $\bmod m$.

It turns out that not only are a and b noninvertible mod m, but all of their multiples as well are noninvertible. The nature of the non-invertibility of multiples of a and $b \bmod m$ is closely related to the non-invertibility of $(0 \bmod a)$ and $(0 \bmod b)$.

Theorem. If $m=a b$ and r is non-invertible $\bmod m$, then $(r \bmod a)$ or $(r \bmod b)$ is non-invertible mod a or b, respectively.

Proof. We have that r is invertible mod m if and only if it is relatively prime to m. Thus this theorem reduces to the following statement: $\operatorname{gcd}(r, m)=1$ if and only if $\operatorname{gcd}(r, a)=1$ and $\operatorname{gcd}(r, b)=1$.

If $\operatorname{gcd}(r, a) \neq 1$, then $\operatorname{gcd}(r, a)=d$ for $d>1$, and hence $d \mid a b$ because $d \mid a$, thus $d \mid m$; therefore, d is a common factor of r and m and $\operatorname{gcd}(r, m)>1$: this implies that $\operatorname{gcd}(r, m)$ can be 1 only if $\operatorname{gcd}(r, a)=$ $\operatorname{gcd}(r, b)=1$. The converse is left as an exercise.

These theorems motivate us to consider if there is a more specific relationship between the residues mod m and those mod a, b. The full theorem will be given at the end of this section - before we state it, it's worth it to understand the multiples of $a \bmod b$: this is where we make use of the assumption that a, b be relatively prime, i.e. $\operatorname{gcd}(a, b)=1$.
Theorem. If $a, b>1$ are integers such that $\operatorname{gcd}(a, b)=1$, then the numbers $0, a, 2 a, \ldots,(b-1) a$ have unique remainders mod b. In other words, for any integers $0 \leq x<y<b$, we must have $x a \not \equiv y a \bmod b$.

Proof. We prove by contradiction: suppose that $x a \equiv y a \bmod b$ for $0 \leq x<y<b$. Then $(x-y) a \equiv 0$. We know also that a is invertible $\bmod b$ because $\operatorname{gcd}(a, b)=1$, thus we may multiply this congruence by the inverse h of $a \bmod b$ (i.e. $h a \equiv 1 \bmod b$) to get:
$(x-y) a h \equiv 0 \cdot h \Longrightarrow(x-y) \cdot 1 \equiv 0 \Longrightarrow x-y \equiv 0 \Longrightarrow x \equiv y$.
But $0 \leq x<y<b$, thus it is a simple fact of numbers that $y-x$ cannot be a multiple of b, which is a contradiction.

As a result, one can imagine that the multiples of a cycle around the residues mod b; if $a=1$ for example, then the multiples of a are simply $0,1,2,3, \ldots, b-1,0,1,2,3, \ldots$ etc, and if $a>1$, then the multiples of a need not be consecutive integers mod b, but they will still go through each of the residues mod b exactly once until they return to 0 with $a b \equiv 0 \bmod b$.

It remains to notice that there are $a \cdot b$ ways to choose a residue $\bmod a$ and a residue mod b. Then we guess that, since there are exactly $a \cdot b$ residues mod $m=a b$, there might be a one-to-one relationship between pairs of residues $(x, y) \bmod a, b$ and residues $r \bmod m$.

Indeed, this is the case.

Theorem (Chinese Remainder Theorem). Let a, b be relatively prime. Then the following system of congruences:

$$
\begin{array}{cc}
x \equiv k & \bmod a \\
x \equiv l & \bmod b
\end{array}
$$

has a unique solution mod ab, i.e. there exists exactly one integer x such that $0 \leq x<a b$ and x satisfies both the above congruences.

Proof. Let $x=k+t a$ for some integer t. Then x satisfies the first congruence, and our goal will be to find t such that x satisfies the second congruence.

To do this, write $k+t a \equiv l \bmod b$, which gives $t a \equiv l-k \bmod b$. Notice now that because a, b are relatively prime, a has an inverse $h \bmod b$ such that $a h \equiv 1 \bmod b$. Therefore $t \equiv h(l-k) \bmod b$, and $x=k+a h(l-k)$ is a solution to both the congruences.

To see uniqueness, suppose x and x^{\prime} are both solutions to both congruences such that $0 \leq x, x^{\prime}<a b$. Then we have

$$
\begin{array}{cc}
x-x^{\prime} \equiv k-k \equiv 0 & \bmod a \\
x-x^{\prime} \equiv l-l \equiv 0 & \bmod b
\end{array}
$$

Thus $x-x^{\prime}$ is a multiple of both a and b; because a, b are relatively prime, this implies that $x-x^{\prime}$ is a multiple of $a b$, but if this is the case then x and x^{\prime} cannot both be positive and less than $a b$ unless they are in fact equal.

Homework

1. Is it possible for a multiple of 3 to be congruent to $5 \bmod 12$?
2. (a) Find inverse of $7 \bmod 11$.
(b) Find all solutions of the equation

$$
7 x \equiv 5 \bmod 11
$$

3. Solve the following systems of congruences
(a)

$$
\begin{array}{ll}
x \equiv 1 & \bmod 3 \\
x \equiv 1 & \bmod 5
\end{array}
$$

(b)

$$
\begin{array}{ll}
z \equiv 1 & \bmod 5 \\
z \equiv 6 & \bmod 7
\end{array}
$$

4. (a) Find the remainder upon division of 23^{2019} by 7.
(b) Find the remainder upon division of 23^{2019} by 70. [Hint: use $70=7 \cdot 10$ and Chinese Remainder Theorem.]
5. (a) Find the remainder upon division of 24^{46} by 100.
(b) Determine all integers k such that $10^{k}-1$ is divisible by 99.
6. In a calendar of some ancient race, the year consists of 12 months, each 30 days long. They also use 7 day weeks, same as we do.

If first day of the year was a Monday, will it ever happen that 13th day of some month is a Friday? If so, when will be the first time it happens, and how often will it repeat afterwards?
[Hint: this can be rewritten as a system of congruences: $n \equiv 5 \bmod 7, n \equiv 13 \bmod 30$.]
7. How many remainders mod 2310 can be expressed as powers of 6 ?

