MATH 8: HANDOUT 22

DIVISIBILITY V: CONGRUENCES

REMINDER: EUCLID'S ALGORITHM

Recall that as a corollary of Euclid's algorithm we have the following result:
Theorem. An integer m can be written in the form

$$
m=a x+b y
$$

if and only if m is a multiple of $\operatorname{gcd}(a, b)$.
For example, if $a=18$ and $b=33$, then the numbers that can be written in the form $18 x+33 y$ are exactly the multiples of 3 .

To find the values of x, y, one can use Euclid's algorithm; for small a, b, one can just use guess-and-check.

Congruences

An important way to deduce properties about numbers, and discover fascinating facts in their own right, is the concept of what happens to the pieces leftover after division by a specific integer. The first key fact to notice is that, given some integer m and some remainder $r<m$, all integers n which have remainder r upon division by m have something in common - they can all be expressed as r plus a multiple of m.

Notice next the following facts, given an integer m :

- If $n_{1}=q_{1} m+r_{1}$ and $n_{2}=q_{2} m+r_{2}$, then $n_{1}+n_{2}=\left(q_{1}+q_{2}\right) m+\left(r_{1}+r_{2}\right)$;
- Similarly, $n_{1} n_{2}=\left(q_{1} q_{2} m+q_{1} r_{2}+q_{2} r_{1}\right) m+\left(r_{1} r_{2}\right)$.

This motivates the following definition: we will write

$$
a \equiv b \quad \bmod m
$$

(reads: a is congruent to b modulo m) if a, b have the same reminder upon division by m (or, equivalently, if $a-b$ is a multiple of m), and then notice that these congruences can be added and multiplied in the same way as equalities: if

$$
\begin{array}{rlrl}
a & \equiv a^{\prime} & \bmod m \\
b \equiv b^{\prime} & \bmod m
\end{array}
$$

then

$$
\begin{aligned}
a+b & \equiv a^{\prime}+b^{\prime} \quad \bmod m \\
a b & \equiv a^{\prime} b^{\prime} \quad \bmod m
\end{aligned}
$$

Here are some examples:

$$
\begin{aligned}
& 2 \equiv 9 \equiv 23 \equiv-5 \equiv-12 \quad \bmod 7 \\
& 10 \equiv 100 \equiv 28 \equiv-8 \equiv 1 \quad \bmod 9
\end{aligned}
$$

Note: we will occasionally write $a \bmod m$ for remainder of a upon division by m.
Since $23 \equiv 2 \bmod 7$, we have

$$
23^{3} \equiv 2^{3} \equiv 8 \equiv 1 \quad \bmod 7
$$

And because $10 \equiv 1 \bmod 9$, we have

$$
10^{4} \equiv 1^{4} \equiv 1 \quad \bmod 9
$$

One important difference is that in general, one can not divide both sides of an equivalence by a number: for example, $5 a \equiv 0 \bmod m$ does not necessarily mean that $a \equiv 0 \bmod m$ (see problem 5 below).

Problems

When doing this homework, be careful that you only used the material we had proved or discussed so far - in particular, please do not use the prime factorization. And I ask that you only use integer numbers no fractions or real numbers.

1. (a) Find $\operatorname{gcd}(58,38)$
(b) Solve $58 x+38 y=4$
2. (a) Prove that for any a, m, thefollowing sequence of remainders $\bmod m$:
$a \bmod m, a^{2} \bmod m, \ldots \ldots$.
starts repeating periodically (we will find the period later). [Hint: have you heard of pigeonhole principle?]
(b) Compute $5^{1000} \bmod 12$
3. Find the last digit of 7^{2012}; of $7^{7^{7}}$
4. For of the following equations, find at least one solution (if exists; if not, explain why)

$$
\begin{array}{ll}
5 x \equiv 1 & \bmod 19 \\
9 x \equiv 1 & \bmod 24 \\
9 x \equiv 6 & \bmod 24
\end{array}
$$

5. Give an example of a, m such that $5 a \equiv 0 \bmod m$ but $a \not \equiv 0 \bmod m$
6. Show that the equation $a x \equiv 1 \bmod m$ has a solution if and only if $\operatorname{gcd}(a, m)=1$. Such an x is called the inverse of a modulo m. [Hint: Euclid's algorithm!]
7. Find the following inverses
inverse of $2 \bmod 5$
inverse of $5 \bmod 7$
inverse of $7 \bmod 11$
Inverse of $11 \bmod 41$
8. If $a \equiv 1 \bmod m n$, must it be true that $a \equiv 1 \bmod m$? Provide proof or counterexample.
9. Given integers m, n,
(a) Prove that $(m+1)^{n} \equiv 1 \bmod m$
(b) Given some integer k, determine the value of $(m+1)^{0}+(m+1)^{1}+(m+1)^{2}+\ldots+(m+1)^{k}$ $\bmod m$
(c) Determine the value of $1111 \bmod 9$
(d) Given some integer a written in base 10, determine a method for finding the value of $a \bmod 9$.
10. Given a prime p, let $a_{1}, a_{2}, \ldots, a_{k}$ be a set of positive integers each less than p. Prove that the product $a_{1} a_{2} \ldots a_{k}$ cannot be divisible by p.
