MATH 8: ASSIGNMENT 1

JANUARY 12, 2020

1. Final Review

Here is a collection of problems covering past material from the academic year. Use these as a guide to review and study the past homework sheets - in particular, don't just solve the problems, but review each of the concepts you use either in your notes or in the past homework sheets themselves (or both).

2. Homework

1. A full house is a collection of five cards that consists of a three-of-a-kind and a two-of-a-kind. Calculate the number of possible full houses that one can make from a standard 52 card deck.
2. Consider a function of the form $f(x)=m x+b$. Is it possible to find such a function such that $f(0)=f(1)$ and $f(2)=0$? Is it possible to find such a function such that $f(0)=f(1)=0$ and $f(2)=1$?
3. Simplify $\neg(A \Longrightarrow B)$
4. Simplify $(A \vee B) \Longrightarrow(A \wedge B)$
5. Your flight to Melbourne is scheduled to stop at an airport in Sydney at noon; you must then transfer to a plane scheduled to depart for Melbourne at 1pm. You know that your flight to Sydney is going to be randomly delayed anywhere from 1 hour to 3 hours; you also know that the flight from Sydney to Melbourne is randomly delayed by anywhere from 1 hour to 2 hours. What is the probability that you will be able to make your connection?
6. Prove that if $x^{3} \equiv x \bmod 11$, then $x \equiv 1 \bmod 11$.
7. Prove that if $x^{3} \equiv x \bmod 101$, then $x \equiv 1 \bmod 101$.
8. Let C be a circle of radius 1 centered at point O. Let A, B be points on the circle C. Let D be a circle that goes through O and is tangent to C; additionally, let D be such that it intersects the lines $A O$ and $B O$ at points X, Y, where X, Y are different from O. Calculate the distance $X Y$.
9. You select two distinct numbers at random from 0 to 100 , and you call them x, y respectively. What is the probability that you can find a positive integer k with $0<k<10$ such that $y-x \equiv k \bmod 100$?
10. Let two strings of letters be called incompatible if they do not share a common prefix - i.e., if they do not have letters in common at the beginning. For example, $x m t r$ and $r s a b$ are incompatible, but $x m t r$ and $x s a b$ are compatible (with shared prefix x). Describe, with proof, the largest possible set of incompatible letter strings.
