Math 7

Arithwetic Sequetters

A sequence of numbers is an arithmetic sequence or arithmetic progression if the difference between consecutive terms is the same number, the common difference or d.
Eximplet The sequence $1,5,9,13,17, \ldots$ is an arithmetic sequence because the difference between consecutive terms is $d=4$.

We can also find the n-th term if we know the ast term and d?
Examplen What is ano in the ex ample above?

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=a_{1}+d=1+4=5 \\
& a_{3}=a_{2}+d=\left(a_{1}+d\right)+d=a_{1}+2 d=(1+4)+4=1+2 \times 4=9 \\
& a_{4}=a_{3}+d=\left(a_{2}+d\right)+d=\left(\left(a_{1}+d\right)+d\right)+d=a_{1}+3 d=1+3 \times 4=13
\end{aligned}
$$

The pattern is:

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d_{d} \\
a_{100} & =a_{1}+99 d=1+99 \times 4=397
\end{aligned}
$$

Properties of an Arithmetic Sequence

A useful property of an arithmetic sequence is that any term is the arithmetic menn of its neighbors:

$$
a_{n}=\frac{a_{n-1}+a_{n+1}}{2}
$$

Prooft

$$
\begin{aligned}
& a_{n}=a_{n-1}+d \\
& a_{n}=a_{n+1}-d
\end{aligned}
$$

Adding these two equalities gives us:

$$
2 a_{n}=a_{n-1}+a_{n+1}
$$

from where we can get what we need.
Another property of arithmetic sequences is that we can find the common difference d if we know any two terms a_{m} and a_{n} :

$$
d=\frac{a_{m}-a_{n}}{m-n}
$$

Sum of an Arithmetic Sequence

$$
S_{n}=a_{1}+a_{2}+a_{1}+\cdots+a_{n}=n x \frac{a_{1}+a_{n}}{2}
$$

Prooft To prove this, we write the sum in 2 ways, in increasing and decreasing order.

$$
\begin{aligned}
& S_{n}=a_{1}+a_{2}+\cdots+a_{n} \\
& S_{n}=a_{n}+a_{n-1}+\cdots+a_{1}
\end{aligned}
$$

Adding these two expressions up and noticing that $a_{1}+a_{n}=a_{1}+a_{n-1}=a_{3}+a_{n-2}=\ldots$ we get:

$$
\begin{aligned}
2 S_{n} & =\left(a_{1}+a_{n}\right) \times n \\
S_{n} & =n \times \frac{a_{1}+a_{n}}{2}
\end{aligned}
$$

Homtework

L. Write the first 5 terms of an arithmetic sequence if $a_{1}=7$ and $d=2$.
i. What are the first 2 terms for the sequence

$$
a_{1}, a_{2},-9,-2,5, \ldots ?
$$

3. al0 $=131$ and $d=12$. What is a_{1} ?
$4 \alpha_{1}=27$ and $\alpha_{27}=60$. Find the first term a_{1} and the common difference d.
4. Find the common difference d in an arithmetic sequence if the g-th term is s and the u-th term is 44
5. In the arithmetic progression $5,17,29,41, \ldots$ what term has a yalue of 497 ?
6. Find the sam of the first wo terms for the series $4,7,10,13$...
7. Find the sum of the first 1000 odd numbers.
g. Find the sum $2+4+\cdots+2018$.
no. In a given arithmetic progression, the first term is 6 , and the \boldsymbol{S}_{7}-th term is r_{7} ㅇ. Find the common difference of this arithmetic progression, and give the value of the first five terms.
IL. The 3 -rd term of the arithmetic progression is equal to L The no-th term of it is three times as much as the 6 -th term. Find the first term and the common difference. (Hint: Use the formola for the n-th term of the progression and write what is given in the problem using this formula.)
8. There are 3 trees at equal distances of 5 meters in a line with a well, the distance of the well from the nearest tree being 10 meters. A gardener waters all trees separately starting from the well and he retums to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
9. An arithmetic progression hass first term $a_{1}=a$ and common difference $d=-1$. The sum of the first n terms is equal to the sum of the first $3 n$ terme. Express a in terms of n.
$4{ }^{*}$ The sum of the first 30 terms of an arithmetic progression is 300 , and the sum of the next 30 terms is -300 . Find the sum of the first handred terms of the progression.
