COORDINATES

Coordinate Geometry: Introduction

In this section of the course we are going to study coordinate geometry. The basic notion is the coordinate plane - a plane with a given fixed point, called the origin, as well as two perpendicular lines - axes, called the x-axis and the y-axis. x-axis is usually drawn horizontally, and y-axis - vertically. These two axes have a scale - "distance" from the origin.

The scales on the axes allow us to describe any point on the plane by its coordinates. To find coordinates of a point P, draw lines through P perpendicular to the x - and y-axes. These lines intersect the axes in points with coordinates x_{0} and y_{0}. Then the point P has x-coordinate x_{0}, and y-coordinate y_{0}, and the notation for that is: $P\left(x_{0}, y_{0}\right)$.

The midpoint M of a segment $A B$ with endpoints $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ has coordinates:

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Lines
Given some relation which involves variables x, y (such as $x+2 y=0$ or $y=x^{2}+1$), we can plot on the coordinate plane all points $M(x, y)$ whose coordinates satisfy this equation. Of course, there will be infinitely many such points; however, they usually fill some smooth line or curve. This curve is called the graph of the given relation.

Every relation (equation) of the form:

$$
y=m x+b
$$

where m, b are some numbers, defines a straight line. The slope of this line is determined by m : as you move along the line, y changes m times as fast as x, so if you increase x by 1 , then y will increase by m :

In other words, given two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ slope can be computed by dividing change of $y: y_{2}-y_{1}$ by the change of $x: x_{2}-x_{1}$:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Two non vertical lines are parallel if and only if they have the same slope.
In the equation $y=m x+b, b$ is a y-intercept, and determines where the line intersects the vertical axis (y-axis).

The equation of the vertical line is $x=k$, and the equation of the horizontal line is $y=k$. Notice that in case of the vertical line, the slope is undefined.

Homework

1. A point B is 5 units above and 2 units to the left of point $A(7,5)$. What are the coordinates of point B ?
2. Find the coordinates of the midpoint of the segment $A B$, where $A=(3,11), B=(7,5)$.
3. Draw points $A(4,1), B(3,5), C(-1,4)$. If you did everything correctly, you will get 3 vertices of a square. What are coordinates of the fourth vertex? What is the area of this square?
4. (a) 3 points $A(0,0), B(1,3), D(5,-2)$ are vertices of a parallelogram $A B C D$. What are the coordinates of point C ?
(b) 3 points $A(0,0), B(2,3), D(4,1)$ are vertices of a parallelogram $A B C D$. What are the coordinates of point C ?
(c) 3 points $A(0,0), B(1,5), D(3,-2)$ are vertices of a parallelogram ABCD . What are the coordinates of point C ?
(d) Can you guess the general rule: if $A(0,0), B\left(b_{1}, b_{2}\right), D\left(d_{1}, d_{2}\right)$ are 3 vertices of a parallelogram, what are coordinates of point C ?
5. Consider the triangle $\triangle A B C$ with the vertices $A(-2,-1), B(2,0), C(2,1)$. Find the coordinates of the midpoint of B and C. Find the length of the median (i.e. a median unites a vertex with the midpoint of the opposite side) from A in the triangle $\triangle A B C$.
6. What is the slope of a line whose equation is $y=2 x$? What is the slope of a line whose equation is $y=m x$?
7. In this problem you will find equations that describe some lines.
(a) What is the equation whose graph is the y-axis?
(b) What is the equation of a line whose points all lie 5 units above the x-axis?
(c) Is the graph of $y=x$ a line? Draw it.
(d) Find the equation of a line that contains the points $(1,-1),(2,-2)$, and $(3,-3)$.
8. For each of the equations below, draw the graph, then draw the perpendicular line (going through the point $(0,0)$) and then write the equation of the perpendicular line
(a) $y=2 x$
(b) $y=3 x$
(c) $y=-x$
(d) $y=-\frac{1}{2} x$

Can you determine the general rule: if the slope of a line is k , what is the slope of the perpendicular line?

