Absolute Value means ...
... only how far a number is from zero:

" 6 " is 6 away from zero, and " -6 " is also 6 away from zero.

$a+b=b+a$	commutative law for addition
$a b=b a$	commutative law for multiplication
$a+(b+c)=(a+b)+c$	Associative law for addition
$a(b c)=(a b) c$	associative law for multiplication
$a(b+c)=a b+a c$	distributive law
$a(b-c)=a b-a c$	distributive law
$a-(b+c)=a-b-c$	distributive law
$a-(b-c)=a-b+c$	distributive law

Power Rules

General notation (n is a whole number): $a^{n}=a * a * a * \ldots * a$ (n times)
Special cases:

$a^{0}=1$	read: a-to-the-zero
$a^{1}=a$	is just itself 'a''
$a^{2}=a * a$	read: a-squared
$a^{3}=a * a * a$	read:a-cubed

$(a b)^{n}=a b * a b * a b * \ldots * a b$ n times
$(a b)^{n}=(a * a * a * \ldots * a)(b * b * \ldots * b) \mathrm{n}$ times
$(a b)^{n}=a^{n} b^{n}$
$a^{n} a^{m}=(a * a * \ldots * a)(a * a * \ldots * a) \mathrm{n}$ and m times respectively
$a^{n} a^{m}=a * a * a * a \ldots * a \quad \mathrm{n}+\mathrm{m}$ times

$$
\begin{array}{lr}
a^{n} a^{m}=a^{n+m} & \sqrt{a b}=\sqrt{a} \sqrt{b} \\
\frac{\mathrm{a}^{\mathrm{n}}}{a^{m}}=a^{n-m} & \sqrt{a}=a^{\frac{1}{2}} \\
a^{n}=\frac{1}{a^{-n}} & \\
a^{-n}=\frac{1}{a^{n}} &
\end{array}
$$

Difference of squares formula: $\quad(x-a)(x+a)=x^{2}-a^{2}$
Square of the difference formula: $\quad(a-b)(a-b)=a^{2}-2 a b+b^{2}$
Square of the sum formula: $\quad(a+b)(a+b)=a^{2}+2 a b+b^{2}$
Powers of 2

n	0	1	2	3	4	5	6	7	8	9
2^{n}	1	2	4	8	16	32	64	128	256	512

$$
\begin{gathered}
\frac{\text { Parallelogram }}{\text { Area }=b \times h} \\
\mathrm{~b}=\text { base } \\
\mathrm{h}=\text { vertical height }
\end{gathered}
$$

Circle
Area $=\pi \times r^{2}$
Circumference $=2 \times \pi \times r$

$$
\begin{aligned}
& \text { Circumference } \\
& r=\mathrm{rad}
\end{aligned}
$$

$$
\mathrm{r}=\text { radius }
$$

$\frac{\text { Trapezoid (US) }}{\text { Trapezium (UK) }}$
Area $=1 / 2(a+b) \times h$
$h=$ vertical height
$\frac{\text { Trapezoid (US) }}{\text { Trapezium (UK) }}$
$\begin{aligned} & \text { Area }=1 / 2(a+b) \times h \\ & h=\text { vertical height }\end{aligned}$
$\frac{\text { Trapezoid (US) }}{\text { Trapezium (UK) }}$
Area $=1 / 2(a+b) \times h$
$h=$ vertical height

Theorem (Pythagorean theorem). In a right triangle with legs a, b and hypotenuse c, one has:

$$
a^{2}+b^{2}=c^{2}
$$

$\angle \alpha=\angle \alpha-$ opposite
$\angle \alpha+\angle \beta=180^{\circ}-$ on a straight line,
Or complementary angles

$\angle 1=\angle 3=$ alternate interior angles
$\angle 1=\angle 2=$ corresponding angles
$\angle 4=\angle 2=$ alternate exterior angles

Rule 1 (Side-Side-Side rule). If $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$ and $A C=A^{\prime} C^{\prime}$ then $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$. This rule is commonly referred to as the $\boldsymbol{S S S}$ rule.

Rule 2 (Angle-Side-Angle Rule). If $\angle \mathrm{A}=\angle A^{\prime}, \angle \mathrm{B}=\angle B^{\prime}$ and $\mathrm{AB}=A^{\prime} B^{\prime}$, then $\triangle \mathrm{ABC} \cong$ $\Delta A^{\prime} B^{\prime} C^{\prime}$. This rule is commonly referred to as ASA rule.

Rule 3 (SAS Rule). If $\mathrm{AB}=A^{\prime} B^{\prime}, \mathrm{AC}=A^{\prime} C^{\prime}$ and $\angle \mathrm{A}=\angle A^{\prime}$, then $\triangle \mathrm{ABC} \cong \triangle A^{\prime} B^{\prime} C^{\prime}$. These rules - and congruent triangles in general - are very useful for proving various properties of geometric figures. As an illustration, we prove the following useful result.

Probability
$P(A)=\frac{\text { number of outcomes giving } A}{\text { total number of outcomes }}$
$P(A$ or $B)=P(A)+P(B)$ (mutually exclusive events)
$P(n o t A)=1-P(A)$
The probability of two non-mutually exclusive events is denoted by:
$\mathrm{P}(\mathrm{Y}$ or Z$)=\mathrm{P}(\mathrm{Y})+\mathrm{P}(\mathrm{Z})-\mathrm{P}(\mathrm{Y}$ and Z$)$
The probability of two independent events is denoted by: $\mathrm{P}(\mathrm{Y}$ and Z$)=\mathrm{P}(\mathrm{Y}) * \mathrm{P}(\mathrm{Z})$

Speed, time, distance
$\mathrm{S}=\mathrm{V} * \mathrm{t}$, where S - distance, V -speed, t -time

