Math 5B: Classwork 27 Homework #27 is due May 10-th.

REVIEW

May 3, 2020

- Binary numbers. Powers of 2:

n	0	1	2	3	4	5	6	7	8	9
2 ⁿ	1	2	4	8	16	32	64	128	256	516

Numbers in decimal notation can be presented like this

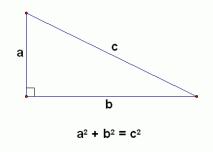
 $351 = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 101011111b$

Recall: Square root of a (denoted \sqrt{a} is a number whose square is equal to a. For example: square root of 25 is 5, because $5^2 = 25$.

We discussed that

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
$$\sqrt{a + b} \neq \sqrt{a} + \sqrt{b}$$

$$\sqrt{a^2} = |a|$$


$$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = \sqrt{2^2} \cdot \sqrt{8} = 2 \cdot \sqrt{2}$$

$$\sqrt{a^8} = \sqrt{(a^4)^2} = a^4$$

Square roots naturally appear in geometry:

Pythagorean Theorem: In a right triangle with legs a, b and hypotenuse c, one has

$$a^2+b^2=c^2$$
 or $c=\sqrt{a^2+b^2}$

Review Exponents Properties/Rules:

1.
$$a^0 = 1$$

2.
$$a^m \cdot a^n = a^{m+n}$$

3. $a^m \div a^n = \frac{a^m}{a^n} = a^{m-n}$
4. $(ab)^n = a^n \cdot b^n$
5. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
6. $a^n = \frac{1}{a^{-n}}$
7. $(a^m)^n = a^{m \cdot n}$

Proportions

To make 13 cookies you need 2 cups of flour. How much flour you need to make 20 cookies?

13 cookies – 2 cups	$\frac{13}{2} = \frac{2}{2}$
20 cookies – x cups	20 x
	$13x = 2 \cdot 20$

Homework 27: REVIEW

- 1. Binary numbers:
 - a. Write as binaries: 35, 11, 40
 - b. Write as Decimals: 101010b, 11100011b
- 2. Solve equations:

a)
$$\frac{3}{8}x = \frac{1}{3}$$
 b) $|2x - 5| = 1$ c) $\frac{x-2}{x-1} - 4 = 3$

3. Simplify:

 $\frac{6^{5} \cdot 2^{4}}{3^{5} \cdot 2^{2}} = \frac{42^{2}}{6^{2}} = \frac{9^{2} \cdot 2^{4}}{6^{2}} = \sqrt{\frac{4^{2}}{5^{10}}} = \sqrt{12} =$

- 4. A piece of cable 8.5 cm long weighs 52 grams. What will a 10-cm length of the same cable weigh?
- 5. Find a simple fraction form for the following repeating decimals:
 - a) 0. 73 b) 0. 81

If you forgot how to do it, please refresh your memory here -> https://www.youtube.com/watch?v=xX1sqV1nSAQ

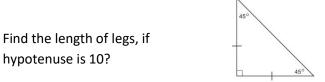
- 6. The standard card deck has 4 suits (hearts, diamonds, spades, and clubs); each suit has 13 different card values: 2 through 10, jack, queen, king, and ace. If you randomly draw one card, what is the probability of getting
 - (a) The queen of spades
 - (b) A face card (i.e., jack, queen, or king)
 - (c) Anything but the queen of hearts
- 7. Open parenthesis, simplify:

(a)
$$3(a-5) - 2(2a-9) =$$

(b) $12x - 3x(x+4) =$
(c) $5x - 5(7-a+x) =$
(d) $-3z - (z-4) + 2(2z-5) =$
(e) $a(a+b) + b(a+1) =$
(f) $2a(a-2) - a(a-1) =$

Open parenthesis, simplify.

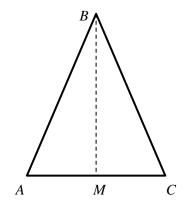
$$(2x-3)^2 = (4x-5)(4x+5) =$$


8. Simplify:

(a)
$$\left(\frac{5a^2b^5}{4a^3b^3}\right)^3 =$$
 (b) $\left(2z^2 \cdot 3z^3 \cdot z\right)^2 =$ (c) $\frac{(-ab)^8}{(ab)^2} =$
(d) $\left(\frac{3ab^3}{15b}\right)^2 \cdot \frac{75c}{a^2b^6} =$ (d) $\left(\frac{3a^5b^2}{21ab}\right)^2 \cdot \frac{7^4}{a^{16}b^2} =$

- 9. Solve equations: Find x, DO NOT FORGET TO CHECK
- a) $\frac{3}{4}(x+8) = 10$ b) $\frac{1}{2}(x+1) = x - 3$ c) $\frac{1}{2}x + \frac{1}{3}x = x - \frac{1}{12}$ d) $\frac{3x+2a}{2a-5x} = -1$ e) $\frac{3x+2a}{2a-5x} - 7 = 8$
- 10. Open parenthesis, simplify:

$$3a(b + ac) - c(3a^{2} - 2) + 2ab =$$
$$2a(2a - 3) - 3(2a + 3) =$$
$$(2a - 3)(2a + 3) =$$



DISTANCE- SPEED- TIME

- 12. A man travels at 4 mph in still water. If the current's velocity is 2 mph, it takes 4 hours to row to a place and come back. How far is the place?
- 13. If a person walks at 4 mph, he covers a certain distance. If he walks at 9 mph, he covers7.5 miles more. How much distance did he cover?
- 14. A swimming pool can be filled by one pipe in 3 hours, by another pipe in 5 hours and by a third pipe in 10 hours. How long it will take to fill up the pool if all three pipes are working?
- 15. Prove that if in the triangle $\triangle ABC \ alpha ABC$

Hint: use definition of isosceles triangle

Use congruency rules

