Handout #9. November 17, 2019

Solve equations by substitution:

Example:
$$(y + 5) \div 3 = 7$$

substitution: $y + 5 = z$
 $z \div 3 = 7$
 $z = 7 \times 3 = 21$
 $y + 5 = 21$
 $y = 21 - 5 = 16$ Check: $(16 + 5) \div 3 = 7$

Geometry

Remember vertical angles?

$$\angle 1 = \angle 2$$

$$\angle 3 = \angle 4$$

- A **transversal** is a **line** that passes through two **lines** in the same plane at two distinct points.
- The angles in matching corners are called **Corresponding Angles**.
- When the lines are parallel, the **Corresponding Angles** are equal

$$\angle 1 = \angle 3$$

- The **angles** that are formed on opposite sides of the transversal and inside the two lines are **Alternate Interior Angles**.
- When the lines are parallel, the **Alternate Interior Angles** are equal.

$$\angle 1 = \angle 2$$

Triangles:

Acute triangle has all acute angles, not only 60°

Obtuse triangle has an obtuse angle.

Isosceles triangle has two equal sides

Scalene triangle that has three unequal sides

Right triangle has a right angle.

Triangle properties:

Sum of interior angles of any triangle ($(\lor \Delta)$ is 180° .

$$\angle x + \angle y + \angle z = 180^{\circ}$$

Proof:

We prove it by using our knowledge of vertical angles and corresponding angles and the knowledge that a straight line is a straight angle which is 180°

In any triangle ($\forall \Delta$) the sum of 2 sides is always grater then the third. ($\forall \Delta ABC, AB+BC > AC$)

In any triangle,

- the largest interior angle is opposite the largest side.
- the smallest interior angle is opposite the smallest side
- the middle-sized interior angle is **opposite** the middle-sized side