Lesson № 23

Calculate:

$2+4=$
$2+(-4)=$
$2-4=$
$2-(-4)=$
$(-3)+1=$
$(-3)+(-1)=$
$(-3)-1=$
$(-3)-(-1)=$

Angle sum of a Quadrilateral.

- Any quadrilateral can be split into four triangles
- Angle sum of each of these triangles equals 360°
- The angles of a quadrilateral are combinations of the angles of these four triangles (except the angles sharing the common vertex).
- These "inner" angles that add up to 360° must be subtracted
$4 \times 180^{\circ}-360^{\circ}=360^{\circ}$

360°
2 A. Is it possible to have a quadrilateral with exactly 3 right angles?

B. Three angles of a quadrilateral equal $75^{\circ}, 90^{\circ}$, and 110°. What is the $4^{\text {th }}$ angle of the
 quadrilateral?

3
 Draw a Venn diagram for:

- Square, Parallelogram, Rectangle

- Triangle, Parallelogram , Square, all shapes

Squares:

- Rectangle , Rhombus, Trapezoid, Parallelogram
- Quadrilateral, Rectangle, Rhombus, Trapezoid, Parallelogram, Square

- Triangle, Parallelogram , Square, Circle, all shapes

Prime Numbers and Composite Numbers

Note, dividing evenly means without producing a remainder or a fraction!

4
Place the numbers from the set \boldsymbol{R} into the Venn Diagram.
$\boldsymbol{R}=\{2,3,45,6,7,8,9,10\}$

Factors are the numbers we multiply together to get another number. Factors divide the number evenly.

Example: factors of 56

$$
56=7 \times 8
$$

Factors: 7 and 8
$56: 2=28 \quad 56: 14=4$
$56: 4=14 \quad 56: 28=2$
$56: 8=7$
$56: 1=56$
$56: 7=8$
$56: 56=1$

A Prime Number has only two factor: one and itself.

5 Sort the following numbers into the Venn Diagram. List at least one of the factors for each number. DO NOT use trivial factors for composite numbers.
$S=\{3,4,5,6,7,8,9,10\}$
3 : \qquad $=$ \qquad 4 : \qquad
\qquad
5 : \qquad $=$

6 : \qquad $=$

7 : \qquad $=$
8 : \qquad $=$ \qquad

9 : \qquad $=$
10 : \qquad
\qquad

6 Which numbers represented as products of several factors below?
$3 \times 2 \times 2=$
$7 \times 3 \times 2=$
$3 \times 5 \times 4 \times 2=$
$5 \times 2 \times 2=$
$6 \times 5 \times 3=$
$3 \times 5 \times 4 \times 10=$

Connection between factors and operations.

$$
6 \times 5 \times 4=120
$$

7
Present the following products as sequences of operations:
$32=2 \times 4 \times$ \qquad

$60=$ \qquad $\times 5 \times$ \qquad

Write the result without cumbersome calculations:
8
$128 \times 54: 54=$
$56 \times 29: 56=$
$2 \times 272 \times 4: 272=$
$329 \times 21: 21=$
$71 \times 127: 71=$
$4 \times 4 \times 319: 319=$
$29 \times 7: 7=$
$562 \times 13: 562=$
$97 \times 4 \times 5: 97=$

Some factors are prime numbers; some are not.
Factors that are prime numbers are called Prime Factors
9
Analyze a tree of factors for number 48.

10 Depending on the first step the view of you tree might be different. See how the tree depends on the first step:

Compare different factor trees for the composite numbers below. Do various trees produce different sets of prime factors?

Every number can be represented as a product of prime factors in a unique way.

This unique set of prime factors of the number is called its Prime Factorization.

Fraction of a number.

Reminder: to find one n-th of a number one has to multiply this number by $\frac{1}{n}$ or divide the number by n :
For example:
$60 \times \frac{1}{4}=60: 4=15$

To find a random fraction $\frac{m}{n}$ of a number W its $\frac{1}{n} \quad$ fraction has to be taken \boldsymbol{m} times:

$\frac{m}{n} \quad$ fraction of a number W equals the $\frac{1}{n}$ fraction of the number $\boldsymbol{W} \times \boldsymbol{m}$

12 Calculate:
$60 \times \frac{1}{3}=60: 3=$
$90 \times \frac{1}{3}=90: 3=$
$15 \times \frac{1}{3}=15: 3=$
$60 \times \frac{2}{3}=60: 3 \times 2=$
$20 \times \frac{3}{4}=20: 4 \times 3=$
$25 \times \frac{2}{5}=25: 5 \times 2=$
$12 \times \frac{5}{6}=12 \times 5: 6=$
$14 \times \frac{3}{7}=14: 7 \times 3=$
$8 \times \frac{3}{4}=8 \times 3: 4=$
$20 \times \frac{2}{5}=20: \square \times \square=$
$12 \times \frac{3}{4}=12 \times \square: \square=6 \times \frac{2}{3}=6:$$\times$$=$

