Lesson № 22

1 Solve the word problems:
A. A robot spent 3 hours to make 6 sets of chess pieces. How long will it take the robot to make 17 such sets?
B. It takes a raft 6 hours to drift every 18 km downstream. How long will it take the raft to drift 24 km?

C. There were 18 apples and 24 oranges in a bad. Katie took $1 / 3$ of those apples and $1 / 4$ of the oranges. How many fruit did she take?

2 Solve equations:

8	0			(X	-		2)			8				

General fraction $\frac{m}{n}$.
3
Calculate:
$1 \mathrm{~cm}+1 \mathrm{~cm}=$
$1 \mathrm{~m}+1 \mathrm{~m}=$
$\frac{1}{7}+\frac{1}{7}=$ $\frac{1}{n}+\frac{1}{n}=$
$1 \mathrm{~cm} \times 3=$ $1 \mathrm{~m} \times 3=$ $\frac{1}{7} \times 3=$ $\frac{1}{n} \times 3=$

A fraction $\frac{1}{n}$ represents a unit broken into \boldsymbol{n} equal parts.

A fraction $\frac{m}{n}$ represents \boldsymbol{m} fractions $\frac{1}{n}$ added together:

$$
\frac{m}{n}=m \times \frac{1}{n}
$$

$$
\frac{2}{9}+\frac{5}{9}=\quad \frac{2}{n}+\frac{5}{n}=
$$

$3 \mathrm{~cm} \times 5=$
$2 \mathrm{~m} \times 7=$

$$
\frac{1}{11} \times 4=\quad \frac{1}{n} \times 9=
$$

5 Label the following fractions on the number line: $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{12}, \frac{5}{12}$, $\frac{3}{4}, 1 \frac{1}{2}, 1 \frac{3}{12}, \frac{2}{3}$

Compare the yellow (Y) and the gray (G) areas on the drawing:
\square $\mathrm{Y} \square \mathrm{G}$

6

The yellow and the gray rectangles have the same area but different shape. These shapes illustrate two ways of making a fraction $\frac{m}{n}$:

$$
\frac{m}{n}=\frac{1}{n} \times m=m: n
$$

Fill in the blanks:
$\frac{1}{5} \times 3={ }_{5}=3: 5$
$\square \times 4=\frac{4}{7}=\square: \square$
$\frac{1}{9} \times \square=\frac{\overline{9}}{}=7: \square$
$\square \times 5=\overline{6}=5: \square$
$\frac{1}{8} \times 3=\frac{\square}{\square}=\square:$ \square

$$
\frac{1}{\square} \times \square=\frac{\overline{5}}{}=3:
$$

$$
\frac{1}{8} \times 5=\frac{\square}{\square}=5: \square
$$ are in our numerical system.

Sometimes you have to regroup.
For example:

๑๑๑๑๑๑ஏจ๑๑๑ n ก $\\|\\|\\|\\|\\|\\|\\|$

Number	Symbol	Description
1	\mid	Vertical stroke
10	\cap	Heel bone
100	๑	Scroll
1000	Q	Lotus flower
10,000	6	Pointing finger
100,000	γ	Fish
$1,000,000$	$\boxed{ }$	Kneeling person

The answer is 11 hundreds, 3 tens, and 12 units.
Instead of 12 units we want to have 2 units and 1 ten.
Also, instead of 11 hundreds we want to have 1 thousand and 2 hundreds.

So the answer is really:
ใ๑กกกก ||.
Calculate in Egyptian:

$$
\begin{gathered}
666 \cap \| 111 \\
+6 \cap \cap\| \| \\
\hline
\end{gathered}
$$

10
Complete graphs to answer the questions:
A. Three players have to play a group chess tournament. Each player must have a game with another one. How many games will be played?
B. Four players have to play a group chess tournament. Each player must have a game with another one. How many games will be played?
C. Five players have to play a group chess tournament. Each player must have a game with another one. How many games will be played?

10 The following bus services connecting towns A, B, C, D, and E are available in both directions:

1. A-B : \$5
2. D - C : \$7
3. $\mathrm{B}-\mathrm{E}: \$ 4$
4. B-D : \$5
5. D-E : \$4
6. $\mathrm{C}-\mathrm{E}: 6$

What is the cheapest way from A to C?

