Lesson № 24

1
Explain the meaningful expressions related to the story below.

East coast cats live 90 km from the West coast cats. Every day at noon each tribe sends a messenger to the other tribe. East coast cats are great runners so they can run $\mathbf{6} \mathbf{~ k m} / \mathbf{h}$. West coast cats cannot run as quick, so they ride bikes $9 \mathbf{k m} / \mathbf{h}$.

$90: 9$	How long \ldots
$90: 6$	
$6+9$	
6×9	
$6-9$	
$90:(6+9)$	
$12+90:(6+9)$	When \ldots
$12:(6+9)$	

2 Calculate:

$6+3=$	$6+(-3)=$	$6-3=$	$6-(-3)=$
$(-2)+5=$	$(-2)+(-5)=$	$(-2)-5=$	$(-2)-(-5)=$
$0+5=$	$0+(-5)=$	$0-5=$	$0-(-5)=$

3

Do the arithmetics with "magic numbers" that are plotted on the "magic number line"

Δ	Θ	Λ	Σ	Ω	Π

$\Sigma+1=$
$\Sigma+(-1)=$
$\Sigma+(-1)=$
$\Sigma-(-1)=$
$\Omega-\Sigma=$
$\Sigma-\Omega=$
$\Sigma-\Theta=$
$\Theta-\Sigma=$

4 Analyze additional equalities with a whole and its parts.

		15						
\square))		
	6		9					
$6+$	$9=$	15				15	5	
						\%		
$9+$	$6=$	15						9
					6	6		
15	9	$=6$						
9	15	$=$						
15	- 6	$=9$						
6-1	15	$=$						

5 Use number lines to add fractions with like denominators.

$$
\frac{1}{5}+\frac{2}{5}=
$$

$$
\frac{1}{4}+\frac{2}{4}=
$$

$$
\frac{1}{8}+\frac{1}{8}+\frac{3}{8}=
$$

$$
\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+\frac{1}{n}=
$$

$$
\frac{1}{m}+\frac{1}{m}+\frac{2}{m}+\frac{4}{m}=
$$

$1-\frac{2}{5}=$
$1-\frac{3}{4}=$

$$
1-\frac{3}{7}=
$$

Arbitrary Fraction of a Unit $\frac{m}{n}$.

6 Calculate and express the results fractions:
$2: 9=\frac{\square}{\square}$
$5: 9=\frac{\square}{\square}$
$7: 9=\frac{\square}{\square}$
$k: 9=\frac{\square}{\square}$
$3: 5=\frac{\square}{\square}$
$6: 5=\frac{\square}{\square}$
$11: 5=\frac{\square}{\square}$
$\boldsymbol{m}: 5=\frac{\square}{\square}$
$1: \boldsymbol{m}=\frac{\square}{\square}$
$\boldsymbol{q}: \boldsymbol{m}=\frac{\square}{\square}$
$\boldsymbol{n}: 7=\frac{\square}{\square}$
$\boldsymbol{k}: 4=\frac{\square}{\square}$

Finding a fraction of a number.

7 There are 35 marbles in the bag. $1 / 5$ of these marbles is green. $2 / 5$ of the marbles are red. The rest of them are orange.

How many green marbles are in the bag?

How many red marbles are in the bag?
\qquad

How many orange marbles are in the bag?

8 Solve the equations:

Angle Sums of Polygons.

9

How large is an angle
of a square? \qquad

What is the angle sum of a hexagon? \qquad
How large is an angle of a regular hexagon?
 pentagon? \qquad
How large is an angle of a regular pentagon? \qquad

\qquad

