MATH 10 ASSIGNMENT 21: GROUPS

APR 26, 2020

Definition. A group is a set G with a binary operation * and a special element e such that teh following properties hold:

- **1.** Associativity: (a * b) * c = a * (b * c)
- **2.** Unit: there is an element $e \in G$ such that for any $g \in G$, we have e * g = g * e = g
- **3.** Inverses: for any $g \in G$, there exists an element $h \in G$ such that g * h = h * g = e

The operation in groups is also commonly written as a dot (e.g. $g \cdot h$) or without any sign at all (e.g. gh). The unit element is sometimes denoted just 1, and the inverse of g by g^{-1} (see problem 2 below)

A typical example of a group is the group of all permutations of the set $\{1, \ldots, n\}$. It is commonly denoted S_n and called the *symmetric group*. More examples are given in problem 1 below.

Homework

1. Show that the following are groups:

- (a) Set \mathbbm{Z} with the operation of addition
- (b) Set \mathbbm{R} with the operation of addition
- (c) Set $\mathbb{R}^{\times} = \mathbb{R} \{0\}$ with the operation of multiplication
- (d) Set of all vectors in 3 dimensional space, with the operation of addition.
- (e) Set \mathbb{Z}_n of all integers modulo *n* with the operation of addition modulo *n*.
- (f) Matrices of the form

$$\begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix},$$

with the operation of matrix product

- (g) Set O_3 of all rigid motions (i.e., transformations preserving distances) of the 3-dimensional space, with the operation of composition.
- 2. Prove that in a group, each element g has a *unique* inverse: there is exactly one h such that gh = hg = e. (Note that the definition of the group only requires that such an h exists and says nothing about uniqueness). Hint: if h_1, h_2 are different inverses, what is h_1gh_2 ?
- **3.** Prove that in any group, $(xy)^{-1} = y^{-1}x^{-1}$
- 4. Consider the set D_n of all symmetries of a regular *n*-gon (a symmetry is a transformation of the plane that preserves distances and which sends the regular *n*-gon into itself). Prove that D_n is a group with respect to composition. How many elements are there in D_n ? How many of them are rotations?
- 5. Consider the set R of all rotations of 3-dimensional space which preserve a regular tetrahedron.
 - (a) How many elements are there in R?
 - (b) Prove that R is a group.
 - *(c) Every element of R permutes vertices of the tetrahedron and thus determines an element of S_4 . Show that this allows one to identify R with the group A_4 of even permutations of 4 elements.