Mechanical Energy and Work

$$1J = 1N \cdot m = 1\frac{kg \cdot m^2}{s^2}$$

Homework

In each case shown below, find the Energy in Joules

- Yourself running as fast as you can
- Potential energy you get after climbing Mount Everest

– K = _____ J

• Combined Kinetic Energy of all the molecules in 1 m^3 of air. You can assume that the molecules have a typical speed of 500 m/s. The density of air is 1.2 kg/m³.

– U = _____J

W = J

• Work needed to shoot an arrow with a mass of 55 g to a height of 100 m using a bow.

– K = _____ J