CS Homework \#26: Numpy

Deadline: 5/9/2020, 9:00 pm.
Save your code as lastname_homework26.py and submit on GOOGLE CLASSROOM

Task 1

Using np.array(), manually create a numpy array that looks like this:

5	0
7	1

Task 2

Using either np.zeros() or np.ones(), create a two-dimensional numpy array that has 3 rows and 4 columns. The data type of the array should be np.int32.

Task 3

Using the array from Task 2, change all values in the array to 9 .

Task 4

Complete the same task (create a 3 by 4 array with all values equal to 9) using np.repeat(x, y) command, where x is the value(s) that you repeat and y is how many types you repeat them.

Task 5

Create a 5 by 5 array, with integer values randomly drawn between 4 and 8 (included). Print the value of the cell located in the second row and third column of the array.

Task 6

Create a 5 by 5 array, with continuous values randomly drawn between 0.1 and 0.2 . Print all values located in the fourth row of the array. Can you print these values one at a time (that is, one per line)? Can you print these values all at once (the whole row)? Hint: Try the slicing techniques that we used when working with lists.

Task 7

Using np.arange(), create a 4 by 4 array that looks like this (notice that we start with 1 , not 0 !):

1	2	3
4	5	6
7	8	9

Let's call it X. What is np.sum (X) ? What is np.sum $(X, 0)$? What is np.sum $(X, 1)$?

Task 8

What is np.mean (X) ? What is np.mean $(X, 0)$? What is np.mean $(X, 1)$?

Task 9

Using for loops, create a 4 by 4 identity matrix (consisting of integer values):

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

(Do not do this manually. Do not use np.identity() since we did not study this command. Use for loops to the assign values above).

Task 10
Create a deep copy of the identity matrix from Task 9 and transform the matrix to the following:

0	2	2	2
2	0	2	2
2	2	0	2
2	2	2	0

(There are many different ways to complete this task. Try to do this using element-wise operations such as addition and multiplication).

Verify that the original identity matrix is intact (since you made a deep copy).
Task 11
Create a Rock-Paper-Scissors game between a human player and the computer (similar to what we did in class previously). This time, however, use a numpy array to calculate the points that the players get (assume $W=3, D=1, L=0$). Do not use if statements!
*Task 12
Assume that the game is played 5 times. Create a numpy array to store all choices AND points of the human player. Do the same for the AI. These arrays represent the players' "memories".

A "memory" array should look something like this (for example):

0	3
1	1
1	3
2	0
0	0

Where each row represent the round of the game (five rounds played). The first column represents the choices of the player (0 -Rock, 1-Paper, 2-Scissors). The second column represent the number of points that the player got in the round (3-Won, 1-Draw, 0-Lost).

