Homework

$\boldsymbol{m}=\mathbf{1 0 0} \mathbf{g}$ of ice mixed with 1 liter of hot water in a thermally isolated cup. Wgat will be the final temperature of the content of the cup, if the initial temperature of water is $10 \mathbf{0}^{\circ} \mathrm{C}$ and initial temperature of ice is $\mathbf{- 1 \mathbf { 0 } ^ { \circ } \mathrm { C }}$.

Remember that:

- Amount of heat needed to melt ice or vaporize water of mass m, is

$$
\Delta Q=L m
$$

Here L is called specific latent heat of melting or vaporization, respectively. For melting at $\mathbf{0}^{\circ} \mathrm{C}, L=\mathbf{3 3 4} \mathrm{kJ} / \mathrm{kg}$, for vaporization at $\mathbf{1 0 0 ^ { \circ }} \mathbf{C}, L=\mathbf{2 2 6 5} \mathbf{k J} / \mathrm{kg}$.

- Amount of heat needed to increase temperature of a substance by amount $\Delta \boldsymbol{T}$, is

$$
\Delta Q=C m \Delta T
$$

Here \boldsymbol{m} is mass and \boldsymbol{C} is called specific heat capacity.

