- 1 Mole [mol] of any substance contains the same number of molecules, called Avogadro Number:

$$
N_{A} \approx 6.02 \cdot 10^{23} \frac{1}{\mathrm{~mol}}
$$

- Molar Mass, $\mu[\mathrm{g} / \mathrm{mol}]$ is the mass of 1 mole of a given substance. To find it, you need to add up atomic weights of all the atoms in a single molecule. Those can be found in Periodic Table.

Example:

$$
\mu_{H_{2} 0}=(2+16) \frac{g}{m o l}=18 \frac{g}{\mathrm{~mol}}
$$

Ideal Gas Law (revisited)

Classical version (with moles)
"Molecular" version

$P V=n R T$

Here $n=\frac{m}{\mu}$ is amount of substance (in moles),
$R \approx 8.3 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$ is called Universal Gas Constant.

Here $N=n \cdot N_{A}$ is number of molecules, $k_{B}=\frac{R}{N_{A}} \approx 1.36 \cdot 10^{-23} \frac{J}{K}$
is called Boltzmann Constant

Kinetic energy per degree of freedom is

$$
\frac{m v_{x}^{2}}{2}=\frac{k_{b} T}{2}
$$

$P V=N m v_{x}^{2}$
Results of Boltzmann's kinetic theory: pressure of molecules bombarding the wall.

Problem 1

Table salt (or Sodium Chloride, NaCl) is made of Sodium ($\mathrm{Na}+$) and Chlorine (Cl-) ions held together by static electricity. Ions are atoms with extra or missing electrons (in this case, Chlorine steals one electron from Sodium). These ions form a cubic crystal as the one shown in the Figure. Find the distance ' a ' between the centers neighboring ions (Na and Cl), in cm , if the density of NaCl is $\rho=2.16 \mathrm{~g} / \mathrm{ml}$.
Hint: you already know hiw to find the number of Na and Cl ions in any volume, i.e 1 $\mathrm{ml}=1 \mathrm{~cm}^{3}$. On the other hand, each ions occupies one cube of volume a^{3}.

Problem 2

What is the number of molecules in a room of size $4 \times 5 \times 2.5$ meters, at normal conditions ($T=300 \mathrm{~K}, P=100 \mathrm{kPa}$)? Find the total kinetic energy of these molecules, associated with motion in all three directions (i.e. account for 3 degrees of freedom per molecule, ignore rotation).

