• 1 Mole [mol] of any substance contains the same number of molecules, called Avogadro Number:

$$N_A \approx 6.02 \cdot 10^{23} \frac{1}{mol}$$

• Molar Mass, μ [g/mol] is the mass of 1 mole of a given substance. To find it, you need to add up atomic weights of all the atoms in a single molecule. Those can be found in Periodic Table.

Example:

$$\mu_{H_20} = (2+16)\frac{g}{mol} = 18\frac{g}{mol}$$

	Volume	Mass	Amount of Substance	Number of Molecules
Symbol	V	M	n	N
Units	[m ³] or [cm ³]	[kg] or [g]	[mol]	1

Ideal Gas Law

PV = nRT

 $R \approx 8.3 \frac{J}{mol \cdot K}$ is called Universal Gas Constant.

Boyle's Law:

PV=const when T=const

Charles's Law:

V/T=const when P=const

Gay-Lussac's Law:

P/T=const when V=const

Homework

Problem 1 An air bubble in water had volume V= 10 ml at depth h=20m. Find its volume right before the bubble reaches the surface. Assume the temperature of the air inside to be constant (typically, not true!).

Problem 2 Density of a gas is ρ_0 at temperature T_0 (in Kelvin). Find the density at temperature T_0 , and the same pressure.

Problem 3 Suppose you know density ρ (in g/ml) and molar mass μ (in g/mol) for certain substance. Find how many molecules are contained in volume V of this substance (you need to derive a general formular). Using this formula, determine how many molecules are there in V= 100 ml of each of the materials in the table (you will need to consult the Periodic table to find μ):

Substance	ρ (g/ml)	μ (g/mol)	# of molecules in V = 100 ml
liquid water, H ₂ 0	1		
liquid propane, C ₃ H ₈	0.5		
Calcite (chalk)	2.7		
Aluminum*, Al	2.7		
Gold*, Au	19.3		