- 1 Mole [mol] of any substance contains the same number of molecules, called Avogadro Number:

$$
N_{A} \approx 6.02 \cdot 10^{23} \frac{1}{\mathrm{~mol}}
$$

- Molar Mass, $\mu[\mathrm{g} / \mathrm{mol}]$ is the mass of 1 mole of a given substance. To find it, you need to add up atomic weights of all the atoms in a single molecule. Those can be found in Periodic Table.

Example:

$$
\mu_{H_{2} 0}=(2+16) \frac{g}{m o l}=18 \frac{g}{\mathrm{~mol}}
$$

Ideal Gas Law

$P V=n R T$

$$
\begin{aligned}
& \text { Here } n=\frac{m}{\mu} \text { is amount of substance (in moles), } \\
& R \approx 8.3 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \text { is called Universal Gas Constant. }
\end{aligned}
$$

Boyle's Law:
PV=const when $T=$ const

Charles's Law:
$\mathrm{V} / \mathrm{T}=$ const when $\mathrm{P}=$ const

Gay-Lussac's Law:
P-V diagram

Homework

Problem 1 An air bubble in water had volume $\mathrm{V}=10 \mathrm{ml}$ at depth $\mathrm{h}=20 \mathrm{~m}$. Find its volume right before the bubble reaches the surface. Assume the temperature of the air inside to be constant (typically, not true!).

Problem 2 Density of a gas is ρ_{0} at temperature T_{0} (in Kelvin). Find the density at temperature T , and the same pressure.

Problem 3 Suppose you know density ρ (in g / ml) and molar mass μ (in $\mathrm{g} / \mathrm{mol}$) for certain substance. Find how many molecules are contained in volume V of this substance (you need to derive a general formular). Using this formula, determine how many molecules are there in $\mathrm{V}=100 \mathrm{ml}$ of each of the materials in the table (you will need to consult the Periodic table to find μ):

Substance	$\rho(\mathrm{g} / \mathrm{ml})$	$\mu(\mathrm{g} / \mathrm{mol})$	\# of molecules in $\mathrm{V}=100 \mathrm{ml}$
liquid water, $\mathrm{H}_{2} \mathrm{O}$	1		
liquid propane, $\mathrm{C}_{3} \mathrm{H}_{8}$	0.5		
Calcite (chalk)	2.7		
Aluminum*, Al	2.7		
Gold*, Au	19.3		

