Homework 19

- 1. How you have to change the length of the pendulum for the oscillation period became equal to this of the pendulum with the unchanged length placed 10km above the ground?
- 2. There is a spherical stone buried right below the ground. The stone density ρ is higher than ρ_0 the density of the earth ($\rho_0 > \rho$). You place a pendulum right above the stone. Is it possible to evaluate the stone density from the change of the pendulum oscillation period?