Homework 23.

Work, done by the gas.

We have learned is that gas can do work. Consider gas in a cylinder with a piston. We increased pressure inside the cylinder (say, connected the cylinder to a high pressure gas bottle). The piston moves at a constant velocity since the "pressure force" is compensated by the friction force. The expanding gas performs the work and heats the cylinder through friction. Let us calculate this work:

Work $=$ force x displacement $=$ pressure x area x displacement .

Or in a short form:

$$
W=P S d .
$$

But, as we can see, area multiplied by the displacement gives us change in volume, which we denote as $\Delta \mathrm{V}$. This change in volume is represented as the pink cylinder in the figure. So,

$$
W=P \cdot \Delta V
$$

It is interesting that this formula is valid for a cylinder of any shape as long as the pressure is maintained constant. If the gas is just expanding in a cylinder, the pressure changes as the gas pushes the piston outside and the work cannot be calculated that simply.

Problems:

1. There is a cylinder with a piston. The mass of the piston is 100 kg , its area is $100 \mathrm{~cm}^{2}$. The cylinder contains 28 g of nitrogen at $\mathrm{T}_{1}=273 \mathrm{~K}$. The cylinder is heated up to $\mathrm{T}_{2}=373 \mathrm{~K}$. How does the piston position change? The atmospheric pressure is $\sim 101,000 \mathrm{~Pa}$.
2. How much hydrogen (in grams) is in a cylinder with a piston if it performs work of 400J being heated from 250 K to 680 K ? The gas pressure was maintained constant. Neglect the weight of the piston.
3. There is a closed from both sides cylinder with a piston inside. The piston divides the inner volume of the cylinder to two parts. One part contains 3 g of hydrogen, the other contains 17 g of nitrogen. What is the ratio of the volume of "hydrogen part" to the total volume of the cylinder?

