Homework 9.

## Momentum

Momentum is the product of the mass and velocity of an object. Momentum is a vector: it has both a direction and a magnitude.

$$
\vec{P}=m \vec{V}
$$

Momentum is measured in $\mathrm{kg} \mathrm{m} / \mathrm{s}$. As we can see, we can change the momentum by changing the velocity or the mass of an object. To change the velocity, we need to apply force. To change the mass of a moving object we could, for example, put an additional load to the rolling cart.

As we can see, if no forces applied to an object (or objects) and total mass of the object (objects) does not change, the momentum does not change as well.

If an object or a group of objects are isolated (which means that there is no external force applied to them) the total momentum of this object or group of objects does not change no matter how strong they interact with each other. In this case we can say that the total net momentum of the objects conserves.

Example: Find total net momentum of two balls with masses $m$ and $M$ and velocities V and v rolling toward each other.


Solution: First we will choose "positive direction". The momentum and velocity of an object have same direction. I picked up "right-to-left", but the result (as we know) will not change if we choose "left-to-right". The momentum of the left ball is: $\mathrm{P}=\mathrm{MV}$. We consider it as positive, because the
momentum (as the velocity) "looks" in our "positive" direction. The momentum of the left ball $\mathrm{p}=$ - mv. It is negative, because it "looks" in the opposite direction. So, the total net momentum, $\boldsymbol{P}$ is:

$$
P=M V-m v
$$

If $\boldsymbol{M} \boldsymbol{V}$ is larger than $\boldsymbol{m} \boldsymbol{v}$, the total net momentum is positive. It means that it is directed "positively" - left-to-right. If MV is less than mv the total net momentum is negative and "looks" right-to-left.

Problems:

1. Two cars with mass 1000 kg and 2000 kg go toward each other. The speed of the first car is $50 \mathrm{~km} / \mathrm{h}$, the speed of the second is $40 \mathrm{~km} / \mathrm{h}$. Find the total net momentum of the two cars. Make a picture.
2. A 80 kg jogger runs with a constant acceleration of $1 / 5 \mathrm{~m} / \mathrm{s}^{2}$ for 10 seconds. How his momentum changed during this time?
3. A 10 kg ball moving at a speed of $10 \mathrm{~m} / \mathrm{s}$ hits a 5 kg ball which was at rest before the collision. After the collision the smaller ball starts moving at a speed $10 \mathrm{~m} / \mathrm{s}$. Find the velocity of the heavy ball after the collision.
4. A fox is chasing a small rabbit. The momentum of the fox is equal to the momentum of the rabbit. Will the fox catch the rabbit?
5. You send a 100 g ball up and it returns back in 6 seconds. Find the initial momentum of the ball and its momentum in the highest point.
