Ohm's Law

$V=I \cdot R$

- V is Voltage, between two ends of a wire (or resistor, light bulb etc). Measured in Volts [V]
- I is Electric Current, the total charge flowing through the wire in 1 sec . Measured in Amperes [A] (Coulomb per second) : 1A=1C/s
- R is Resistance of the wire. Measured in Ohms [Ω]. $1 \Omega=1 \mathrm{~V} / \mathrm{A}$

Homework

Problem 1

An electric heater is made out of a piece of wire with resistance $R=10 \Omega$, plugged into a standard 110 V outlet. Find the current through this wire, and the overall power of this heater (remember that Power= $\mathrm{V}^{*} \mathrm{I}$).

Problem 2

Two resistors, 10Ω and 20Ω are connected to a 1.5 V battery in parallel. Sketch the circuit, and find the total current flowing via the battery.

You want to replace these two resistors with a single one, so that the current stays the same. How large should be its resistance?

