Work and Kinetic Energy

Starting with the $2^{\text {nd }}$ Newton's Law:

$$
F=m a
$$

One can derive another important result:
"Change in kinetic energy is equal to the mechanical work done by all forces"

$$
\Delta K=W
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
K=\frac{m v^{2}}{2}, \\
W=F \Delta x, \\
\text { (Work }=\text { Force } \mathrm{x} \text { Displacement) }
\end{array} \\
& \text { (is called Mechanical Work }
\end{aligned}
$$

Homework

A bicyclist is moving at constant speed $10 \mathrm{~m} / \mathrm{s}$ on a flat road. There is an air resistance force acting on him which is $\mathrm{F}=100$ Newtons, directed backward (called air drag).
a) What is the total work done by the air drag force in 1 minute?
b) What is the work done by the bicyclist over the same time (assuming there is no other losses except of the air drag)?

