Velocity Speed, Acceleration (contd)

Earlier, we defined Average velocity: between time moments $\boldsymbol{t}_{\boldsymbol{i}}$ and $\boldsymbol{t}_{\boldsymbol{f}}$:

x_{i}, x_{f} - initial and finite positions.
displacement: $\Delta x=x_{f}-x_{i}$
travel time: $\Delta \mathrm{t}=t_{f}-t_{i}$

Instantaneous velocity tells you how fast an object moves right now, at specific time moment t . The formula is the same as above but $\Delta \mathrm{t}$ must be as small as possible. Similarly we can define instantaneous speed.

Acceleration

- Acceleration:

$$
a=\frac{\text { change in velocity }}{\text { change in time }}=\frac{\Delta v}{\Delta t}
$$

Standard units of acceleration : m/s ${ }^{2}$

- If there were no air resistance, all objects in Earth gravity would fall with the same acceleration, $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
(directed downward)

Galileo Galilei's experiment in Pisa (possibly, a legend)

HOMEWORK

A car of length $\mathrm{L}=4.0 \mathrm{~m}$ is moving on a road. Its position is determined by three photo-gates (like we did in class): Gate 1 . Gate 2 and Gate 3. The table below shows the time moments at which each of gates gets blocked and unblocked (t_{1} and t_{2}), in seconds:

GATE \#	$\mathrm{t}_{1}, \mathrm{~s}$ (gate blocked)	$\mathrm{t}_{2}, \mathrm{~s}$ (gate unblocked)	$\mathrm{v}, \mathrm{m} / \mathrm{s}$
Gate 1	0.000	0.120	
Gate 2	5.210	5.300	
Gate 3	7.070	7.140	

a) Find the instantaneous speed of the car at the moments when it passed each gate, and fill the blanks in the table.
b) Find the average speed between the gates 1 and 2 if the distance between them is $D=200 \mathrm{~m}$.
c) Find acceleration of the car as it moves between Gate 1 and 2, and between Gate 2 and 3.
c)* Estimate the distance between gates 2 and 3 .

Feel free to use calculator. Show your work.

