MATH 8: ASSIGNMENT 20

MARCH 10, 2018

1. Chinese Remainder Theorem

This week we will explore the nature of the product of relatively prime numbers.
Recall that we have defined congruences $\bmod m$, for a positive integer m, to denote a system of addition and multiplication performed on the possible remainders upon division by m (i.e., the integers from 0 to $n-1)$. Many of the properties of arithmetic mod m can be derived from representation of m as a product of two smaller integers. Recall also that we have explored the equation $a x \equiv 1 \bmod b$ and the notion that, if such a solution x exists for given a, b, then a is said to be invertible $\bmod b$. We now note the following fact:
Theorem. If m is a composite number such that $m=a b$ for integers $a, b>1$, then there exist non-invertible residues (or remainders) modulo m.
Proof. The equation $a x \equiv 1 \bmod m$ has no solution because a is not relatively prime to m; i.e., $\operatorname{gcd}(a, m)=$ a, thus $a x=1+b y$ is equivalent to finding $x,-y$ such that $a x-b y=1$, which is impossible.

Indeed a is not the only non-invertible residue mod m : all multiples of a and also all multiples of b are also non-invertible mod m by a similar argument to above. The nature of the non-invertibility of multiples of a and $b \bmod m$ is closely related to the non-invertibility of $(0 \bmod a)$ and $(0 \bmod b)$.

Theorem. If $m=a b$ and r is non-invertible mod m, then $(r \bmod a)$ or $(r \bmod b)$ is non-invertible mod a or b, respectively.
Proof. We have that r is invertible mod m if and only if it is relatively prime to m. Thus this theorem reduces to the following statement: $\operatorname{gcd}(r, m)=1$ if and only if $\operatorname{gcd}(r, a)=1$ and $\operatorname{gcd}(r, b)=1$.

If $\operatorname{gcd}(r, a) \neq 1$, then $\operatorname{gcd}(r, a)=d$ for $d>1$, and hence $d \mid a b$ because $d \mid a$, thus $d \mid m$; therefore, d is a common factor of r and m and $\operatorname{gcd}(r, m)>1$: this implies that $\operatorname{gcd}(r, m)$ can be 1 only if $\operatorname{gcd}(r, a)=\operatorname{gcd}(r, b)=1$. The converse is left as an exercise.

These theorems motivate us to consider if there is a more specific relationship between the residues mod m and those $\bmod a, b$. The full theorem will be given at the end of this section - before we state it, it's worth it to understand the multiples of $a \bmod b$: this is where we make use of the assumption that a, b be relatively prime, i.e. $\operatorname{gcd}(a, b)=1$.
Theorem. If $a, b>1$ are integers such that $\operatorname{gcd}(a, b)=1$, then the numbers $0, a, 2 a, \ldots,(b-1) a$ have unique remainders mod b. (Note that ba has remainder $0 \bmod b$, and thence the sequence repeats, with $(b+1) a \equiv a$, $(b+2) a \equiv 2 a$, etc.)
Proof. We prove by contradiction: suppose that $x a \equiv y a \bmod b$ for $x, y<b$. Then $(x-y) a \equiv 0$. We know also that a is invertible mod b because $\operatorname{gcd}(a, b)=1$, thus we may multiply this congruence by the inverse h of $a \bmod b($ i.e. $h a \equiv 1 \bmod b)$ to get:

$$
(x-y) a h \equiv 0 \cdot h \Longrightarrow(x-y) \cdot 1 \equiv 0 \Longrightarrow x-y \equiv 0 \Longrightarrow x \equiv y .
$$

But $x, y<b$, so $x-y$ cannot be a multiple of b, which is a contradiction.
As a result, one can imagine that the multiples of a cycle around the residues $\bmod b$; if $a=1$ for example, then the multiples of a are simply $0,1,2,3, \ldots, b-1,0,1,2,3, \ldots$ etc, and if $a>1$, then the multiples of a need not be consecutive integers mod b, but they will still go through each of the residues mod b exactly once until they return to 0 with $a b \equiv 0 \bmod b$.

It remains to notice that there are $a \cdot b$ ways to choose a residue $\bmod a$ and another (possibly the same) residue $\bmod b$; such pairs of residues are simply equivalent to choosing a pair of integers (x, y) with $0 \leq x<a$ and $0 \leq y<b$. Then we guess that, since there are exactly $a \cdot b$ residues $\bmod m=a b$, there might be a one-to-one relationship between pairs of residues $(x, y) \bmod a, b$ and residues $r \bmod m$.

Indeed, this is the case.

Theorem (Chinese Remainder Theorem). Let a, b be relatively prime. Then the following system of congruences:

$$
\begin{aligned}
x \equiv k & \bmod a \\
x \equiv l & \bmod b
\end{aligned}
$$

has a unique solution mod ab, i.e. there exists exactly one integer x such that $0 \leq x<a b$ and x satisfies both the above congruences.

Proof. Let $x=k+t a$ for some integer t. Then x satisfies the first congruence, and our goal will be to find t such that x satisfies the second congruence.

To do this, write $k+t a \equiv l \bmod b$, which gives $t a \equiv l-k \bmod b$. Notice now that because a, b are relatively prime, a has an inverse $h \bmod b$ such that $a h \equiv 1 \bmod b$. Therefore $t \equiv h(l-k) \bmod b$, and $x=k+a h(l-k)$ is a solution to both the congruences.

To see uniqueness, suppose x and x^{\prime} are both solutions to both congruences such that $0 \leq x, x^{\prime}<a b$. Then we have

$$
\begin{array}{cc}
x-x^{\prime} \equiv k-k \equiv 0 & \bmod a \\
x-x^{\prime} \equiv l-l \equiv 0 & \bmod b
\end{array}
$$

Thus $x-x^{\prime}$ is a multiple of both a and b; because a, b are relatively prime, this implies that $x-x^{\prime}$ is a multiple of $a b$, but if this is the case then x and x^{\prime} cannot both be positive and less than $a b$ unless they are in fact equal.

2. Homework

1. Is it possible for a multiple of 3 to be congruent to $5 \bmod 12$?
2. Given $m=a b$ for $m, a, b>1$, how many of the residues mod m can be written as multiples of a ? Of b ?
3. Given $m=a b$ for integers $m, a, b>1$, and some positive integer r, prove that $\operatorname{gcd}(r, a)=\operatorname{gcd}(r, b)=1$ implies that $\operatorname{gcd}(r, m)=1$.
4. Determine the residue mod 15 which is congruent to $(1 \bmod 3)$ and $(1 \bmod 5)$. Then, determine the residue $\bmod 15$ which is congruent to $(2 \bmod 3)$ and $(4 \bmod 5)$.
5. Determine the residue $\bmod 35$ which is congruent to $(1 \bmod 5)$ and $(6 \bmod 7)$. Then, determine the residue $\bmod 35$ which is congruent to $(4 \bmod 5)$ and $(1 \bmod 7)$.
6. (a) Find the remainder upon division of 19^{2019} by 7 .
(b) Find the remainder upon division of 19^{2019} by 70. [Hint: use $70=7 \cdot 10$ and Chinese Remainder Theorem.]
7. (a) Find the remainder upon division of 24^{46} by 100.
(b) Determine all integers k such that $10^{k}-1$ is divisible by $50^{2}-49^{2}$.
8. How many residues mod 2310 can be expressed as powers of 6 ?
9. This problem poses an alternate proof to the Chinese Remainder Theorem. Let a, b be relatively prime positive integers.
(a) Prove that if x, y are residues mod $a b$ which are congruent both $\bmod a$ and $\bmod b$, then $x \equiv y$ $\bmod a b$.
(b) Deduce that any pair of residues $(k, l) \bmod a, b$ must correspond to a unique residue mod $a b$.
(c) Deduce, then, that there are at least $a \cdot b$ residues mod $a b$ which correspond to a pair of residues $\bmod a, b$.
(d) Prove thence the statement of the Chinese Remainder Theorem.
