1. Homework

- **1.** Let A, B, C be on a circle centered at O such that $\angle AOB \cong \angle BOC \cong \angle COA$. Prove that $\triangle ABC$ is an equilateral triangle.
- **2.** Let A, B, C, D be points on circle ω that form a quadrilateral. Prove that $m \angle ABC + m \angle ADC$. We call such a quadrilateral a cyclic quadrilateral: it is inscribed in a circle.
- **3.** Let $\triangle ABC$ be an isosceles triangle with base \overline{AC} whose perpendicular bisectors meet at point O. Prove that $\angle BOA \cong \angle BOC$.
- **4.** Given points A, B, what is the locus of points C such that $m \angle ACB = x^{\circ}$ for some number x?
- 5. Suppose $\triangle ABC$ and $\triangle DAB$ are isosceles triangles with bases \overline{AC} and \overline{BD} , respectively, such that BD is an altitude of $\triangle ABC$. Prove that CD = AB.
- **6.** Let λ be a circle whose center is inside circle ω such that λ , ω intersect at points P, Q. Let \overline{AB} be a diameter of λ such that A, B are also inside ω ; then, let \overrightarrow{PA} and \overrightarrow{PB} intersect ω at points X, Y respectively. Prove that \overline{XY} is a diameter of ω .
- 7. Let $\triangle ABC$ and $\triangle ADC$ be right triangles such that A, B, C, D lie on a circle and $m \angle BAC = 90^{\circ}$. Prove that ABCD is a rectangle.
- 8. Let circle ω have radius r with center O and λ have radius s with center P, with $r \neq s$, $O \neq P$. Let circle ω' have radius r with center P, and λ' have radius s with center O (i.e., the circles with the same radii but opposite centers). Let ω , λ intersect at points A, B and ω' , λ' intersect at points A', B'; what sort of quadrilateral is ABB'A'? Let circles ω , ω' intersect at points X, X'; what sort of quadrilateral is ABXX'?
- **9.** Given a line segment \overline{AB} such that AB = 1, construct C on \overrightarrow{AB} such that:
 - (a) $AC = \frac{1}{4}$

 - (b) $AC = \frac{4}{3}$ (c) $AC = \frac{1}{6}$ (d) $AC = \frac{1}{5}$

 - (e) $AC = \sqrt{2}$
 - (f) $AC = \sqrt{3}$
 - (g) $AC = \sqrt{5}$
 - (h) $AC = \sqrt{7}$
- 10. Let ABCD and ABEF be parallelograms such that E, F are on the line \overrightarrow{CD} ; let the diagonals \overline{AC} , \overline{BD} intersect at M and \overline{AE} , \overline{BF} intersect at N. Prove that $\overline{MN} \parallel \overline{AB}$.