1. Homework

1. Let A, B, C be on a circle centered at O such that $\angle A O B \cong \angle B O C \cong \angle C O A$. Prove that $\triangle A B C$ is an equilateral triangle.
2. Let A, B, C, D be points on circle ω that form a quadrilateral. Prove that $m \angle A B C+m \angle A D C$. We call such a quadrilateral a cyclic quadrilateral: it is inscribed in a circle.
3. Let $\triangle A B C$ be an isosceles triangle with base $\overline{A C}$ whose perpendicular bisectors meet at point O. Prove that $\angle B O A \cong \angle B O C$.
4. Given points A, B, what is the locus of points C such that $m \angle A C B=x^{\circ}$ for some number x ?
5. Suppose $\triangle A B C$ and $\triangle D A B$ are isosceles triangles with bases $\overline{A C}$ and $\overline{B D}$, respectively, such that $\overline{B D}$ is an altitude of $\triangle A B C$. Prove that $C D=A B$.
6. Let λ be a circle whose center is inside circle ω such that λ, ω intersect at points P, Q. Let $\overline{A B}$ be a diameter of λ such that A, B are also inside ω; then, let $\overleftrightarrow{P A}$ and $\overleftrightarrow{P B}$ intersect ω at points X, Y respectively. Prove that $\overline{X Y}$ is a diameter of ω.
7. Let $\triangle A B C$ and $\triangle A D C$ be right triangles such that A, B, C, D lie on a circle and $m \angle B A C=90^{\circ}$. Prove that $A B C D$ is a rectangle.
8. Let circle ω have radius r with center O and λ have radius s with center P, with $r \neq s, O \neq P$. Let circle ω^{\prime} have radius r with center P, and λ^{\prime} have radius s with center O (i.e., the circles with the same radii but opposite centers). Let ω, λ intersect at points A, B and $\omega^{\prime}, \lambda^{\prime}$ intersect at points A^{\prime}, B^{\prime}; what sort of quadrilateral is $A B B^{\prime} A^{\prime}$? Let circles ω, ω^{\prime} intersect at points X, X^{\prime}; what sort of quadrilateral is $A B X X^{\prime}$?
9. Given a line segment $\overline{A B}$ such that $A B=1$, construct C on $\overrightarrow{A B}$ such that:
(a) $A C=\frac{1}{4}$
(b) $A C=\frac{1}{3}$
(c) $A C=\frac{1}{6}$
(d) $A C=\frac{1}{5}$
(e) $A C=\sqrt{2}$
(f) $A C=\sqrt{3}$
(g) $A C=\sqrt{5}$
(h) $A C=\sqrt{7}$
10. Let $A B C D$ and $A B E F$ be parallelograms such that E, F are on the line $\overleftrightarrow{C D}$; let the diagonals $\overline{A C}$, $\overline{B D}$ intersect at M and $\overline{A E}, \overline{B F}$ intersect at N. Prove that $\overline{M N} \| \overline{A B}$.
