MATH 8: ASSIGNMENT 16

FEB 3, 2019

Special quadrilaterals

In general, a figure with four sides (and four enclosed angles) is called a quadrilateral; by convention, their vertices are labeled in order going around the perimeter (so, for example, in quadrilateral $A B C D$, vertex A is opposite vertex C). Among all quadrilaterals, there are some that have special properties. In this section, we discuss three such types.

Definition 1. A quadrilateral is called

- a parallelogram, if both pairs of opposite sides are parallel
- a rhombus, if all four sides have the same length
- a trapezoid, if one pair of opposite sides are parallel (these sides are called bases) and the other pair is not.

These quadrilaterals have a number of useful properties.
Theorem 17. Let $A B C D$ be a parallelogram. Then

- $A B=D C, A D=B C$
- $m \angle A=m \angle C, m \angle B=m \angle D$
- The intersection point M of diagonals $A C$ and $B D$ bisects each of them.

Proof. Consider triangles $\triangle A B C$ and $\triangle C D A$ (pay attention to the order of vertices!). By Axiom 4 (alternate interior angles), angles $\angle C A B$ and $\angle A C D$ are equal (they are marked by 1 in the figure); similarly, angles $\angle B C A$ and $\angle D A C$ are equal (they are marked by 2 in the figure). Thus, by ASA, $\triangle A B C \cong \triangle C D A$. Therefore, $A B=D C, A D=B C$, and $m \angle B=$ $m \angle D$. Similarly one proves that $m \angle A=m \angle C$.

Now let us consider triangles $\triangle A M D$ and $\triangle C M B$. In these triangles, angles labeled 2 are congruent (discussed above), and by Axiom 4, an-
 gles marked by 3 are also congruent; finally, $A D=B C$ by previous part. Therefore, $\triangle A M D \cong \triangle C M B$ by ASA, so $A M=M C, B M=M D$.
Theorem 18. Let $A B C D$ be a quadrilateral such that opposite sides are equal: $A B=D C, A D=B C$. Then $A B C D$ is a parallelogram.

Proof is left to you as an exercise (see homework problem 3).
Theorem 19. Let $A B C D$ be a rhombus. Then it is a parallelogram; in particular, the intersection point of diagonals is the midpoint for each of them. Moreover, the diagonals are perpendicular.

Proof. Since the opposite sides of a rhombus are equal, it follows from Theorem 18 that the rhombus is a parallelogram, and thus the diagonals bisect each other. Let M be the intersection point of the diagonals; since triangle $\triangle A B C$ is isosceles, and $B M$ is a median, by Theorem 10 in Assignment 14 , it is also the altitude.

Midline of a triangle and trapezoid

Definition 2. A midline of a triangle $\triangle A B C$ is the segment connecting midpoints of two side.
Theorem 20. If $D E$ is the midline of $\triangle A B C$, then $D E=\frac{1}{2} A C$, and $\overline{A D} \| \overline{A C}$.
The proof of this theorem is also given as a homework; it is not very easy.

Homework

1. Let $A B C D$ be a rectangle (i.e., all angles have measure 90°). Show that then, opposite sides are equal.
2. (a) Prove that in a rectangle, diagonals are equal length.
(b) Prove that conversely, if $A B C D$ is a parallelogram such that $A C=B D$, then it is a rectangle.
3. Prove Theorem 18
4. Prove that if in a quadrialteral $A B C D$ we have $A D=B C$, and $\overline{A D} \| \overline{B C}$, then $A B C D$ is a parallelogram.
5. Prove Theorem 20 by completing the steps below.

Continue line $D E$ and mark on it point F such that $D E=E F$.
(a) Prove that $\triangle D E B \cong \triangle F E C$
(b) Prove that $A D F C$ is a parallelogram (hint: use alternate interior angles!)
(c) Prove that $D E=\frac{1}{2} A C$

6. Let $A B C D$ be a trapezoid, with bases $A D$ and $B C$, and let E, F be midpoints of sides $A B, C D$ respectively.

Prove that then $\overline{E F} \| \overline{A B}$, and $E F=(A D+B C) / 2$.

[Hint: draw through point F a line parallel to $A B$, as shown in the figure below. Prove that this gives a parallelogram, in which points E, F are midpoints of opposite sides.]

7. Given a triangle $\triangle A B C$, complete (with proof) the following straightedge-compass constructions:
(a) Construct the median from A to $\overline{B C}$
(b) Construct the altitude from A to $\overline{B C}$
(c) Construct the angle bisector from A to $\overline{B C}$
8. Given a circle, complete (with proof) a straightedge-compass construction of the center point of the circle. [Hint: recall that the perpendicular bisector is the locus of points equidistant from two given points.]

