FEB 3, 2019

Special quadrilaterals

In general, a figure with four sides (and four enclosed angles) is called a quadrilateral; by convention, their vertices are labeled in order going around the perimeter (so, for example, in quadrilateral ABCD, vertex A is opposite vertex C). Among all quadrilaterals, there are some that have special properties. In this section, we discuss three such types.

Definition 1. A quadrilateral is called

- a parallelogram, if both pairs of opposite sides are parallel
- a rhombus, if all four sides have the same length
- a trapezoid, if one pair of opposite sides are parallel (these sides are called bases) and the other pair is not.

These quadrilaterals have a number of useful properties.

Theorem 17. Let ABCD be a parallelogram. Then

- AB = DC, AD = BC
- $m \angle A = m \angle C, \ m \angle B = m \angle D$
- The intersection point M of diagonals AC and BD bisects each of them.

Proof. Consider triangles $\triangle ABC$ and $\triangle CDA$ (pay attention to the order of vertices!). By Axiom 4 (alternate interior angles), angles $\angle CAB$ and $\angle ACD$ are equal (they are marked by 1 in the figure); similarly, angles $\angle BCA$ and $\angle DAC$ are equal (they are marked by 2 in the figure). Thus, by ASA, $\triangle ABC \cong \triangle CDA$. Therefore, AB = DC, AD = BC, and $m \angle B = m \angle D$. Similarly one proves that $m \angle A = m \angle C$.

Now let us consider triangles $\triangle AMD$ and $\triangle CMB$. In these triangles, angles labeled 2 are congruent (discussed above), and by Axiom 4, angles marked by 3 are also congruent; finally, AD = BC by previous part. Therefore, $\triangle AMD \cong \triangle CMB$ by ASA, so AM = MC, BM = MD.

Theorem 18. Let ABCD be a quadrilateral such that opposite sides are equal: AB = DC, AD = BC. Then ABCD is a parallelogram.

Proof is left to you as an exercise (see homework problem 3).

Theorem 19. Let ABCD be a rhombus. Then it is a parallelogram; in particular, the intersection point of diagonals is the midpoint for each of them. Moreover, the diagonals are perpendicular.

Proof. Since the opposite sides of a rhombus are equal, it follows from Theorem 18 that the rhombus is a parallelogram, and thus the diagonals bisect each other. Let M be the intersection point of the diagonals; since triangle $\triangle ABC$ is isosceles, and BM is a median, by Theorem 10 in Assignment 14, it is also the altitude.

MIDLINE OF A TRIANGLE AND TRAPEZOID

Definition 2. A midline of a triangle $\triangle ABC$ is the segment connecting midpoints of two side.

Theorem 20. If DE is the midline of $\triangle ABC$, then $DE = \frac{1}{2}AC$, and $\overline{AD} \parallel \overline{AC}$.

The proof of this theorem is also given as a homework; it is not very easy.

Homework

- 1. Let ABCD be a rectangle (i.e., all angles have measure 90°). Show that then, opposite sides are equal.
- (a) Prove that in a rectangle, diagonals are equal length.
 (b) Prove that conversely, if ABCD is a parallelogram such that AC = BD, then it is a rectangle.
- **3.** Prove Theorem 18
- **4.** Prove that if in a quadrialteral ABCD we have AD = BC, and $\overline{AD} \parallel \overline{BC}$, then ABCD is a parallelogram.
- 5. Prove Theorem 20 by completing the steps below.

Continue line DE and mark on it point F such that DE = EF.

- (a) Prove that $\triangle DEB \cong \triangle FEC$
- (b) Prove that *ADFC* is a parallelogram (hint: use alternate interior angles!)
- (c) Prove that $DE = \frac{1}{2}AC$
- **6.** Let ABCD be a trapezoid, with bases AD and BC, and let E, F be midpoints of sides AB, CD respectively.

Prove that then $\overline{EF} \parallel \overline{AB}$, and EF = (AD + BC)/2.

B

[Hint: draw through point F a line parallel to AB, as shown in the figure below. Prove that this gives a parallelogram, in which points E, F are midpoints of opposite sides.]

- 7. Given a triangle $\triangle ABC$, complete (with proof) the following straightedge-compass constructions: (a) Construct the median from A to \overline{BC}
 - (b) Construct the altitude from A to \overline{BC}
 - (c) Construct the angle bisector from A to \overline{BC}
- 8. Given a circle, complete (with proof) a straightedge-compass construction of the center point of the circle. [Hint: recall that the perpendicular bisector is the locus of points equidistant from two given points.]