## MATH 8: ASSIGNMENT 15

JANUARY 20, 2018

## 1. Constructions with ruler and compass

Now that we know when two geometric objects are the same (via congruence), it makes sense to ask if we can produce figures with specific properties of interest - for example, if we can reproduce a given angle somewhere else so that the resulting angle is congruent to the original. Traditionally, such constructions are done using straight-edge and compass: the straight-edge tool constructs lines and the compass tool constructs circles. More precisely, it means that we allow the following basic operations:

- Draw (construct) a line through two given or previously constructed distinct points. (Recall that by axiom 1 , such a line is unique).
- Draw (construct) a circle with center at previously constructed point $O$ and with radius equal to distance between two previously constructed points $B, C$
- Construct the intersections point(s) of two previusly constructed lines, circles, or a circle and a line

All other constructions (e.g., draw a line parallel to a given one) must be done using these elementary constructions only!!

Constructions of this form have been famous since mathematics in ancient Greece.
Here are some examples of constructions:
Example 1. Given any line segment $\overrightarrow{A B}$ and ray $\overrightarrow{C D}$, one can construct a point $E$ on $\overrightarrow{C D}$ such that $\overline{C E} \cong \overline{A B}$.
Construction. Construct a circle centered at $C$ with radius $A B$. Then this circle will intersect $\overrightarrow{C D}$ at the desired point $E$.


Example 2. Given angle $\angle A O B$ and ray $\overrightarrow{C D}$, one can construct an angle around $\overrightarrow{C D}$ that is congruent to $\angle A O B$.
Construction. First construct point $X$ on $\overrightarrow{C D}$ such that $C X \cong O A$. Then, construct a circle of radius $O B$ centered at $C$ and a circle of radius $A B$ centered at $X$. Let $Y$ be the intersection of these circles; then $\triangle X C Y \cong \triangle A O B$ by SSS and hence $\angle X C Y \cong \angle A O B$.


## 2. Perpendicualr Bisector

Consider any property of points on the plane - for example, the property that a point $P$ is a distance exactly $r$ from a given point $O$. The set of all points $P$ for which this property holds true is called the locus of points satisfying this property. As we have seen above, the locus of points that are a distance $r$ from a point $O$ is called a circle (specifically, a circle of radius $r$ centered at $O$ ).

Now consider we are given two points $A, B$. If a point $P$ is an equal distance from $A, B$ (i.e., if $\overline{P A} \cong \overline{P B}$ ) then we say $P$ is equidistant from points $A, B$.
Theorem 14. The locus of points equidistant from a pair of points $A, B$ is a line $l$ which perpendicular to $\overline{A B}$ and goes through the midpoint of $A B$. This line is called the perpendicular bisector of $\overline{A B}$.

Proof. Let $M$ be the midpoint of $\overline{A B}$, and let $l$ be the line through $M$ which is perpendicular to $A B$ (such a line exists and is unique - prove it!). We need to prove that for any point $P$,

$$
(A P \cong B P) \Longleftrightarrow P \in l
$$

1. Assume that $A P \cong B P$. Then triangle $A P B$ is isosceles; by Theorem 10 from last week, it implies that $P M \perp A B$. Thus, $P M$ must coincide with $l$, i.e. $P \in l$. Therefore, we have proved implication one way: if $A P \cong B P$, then $P \in l$.
2. Conversley, assume $P \in l$. Then $m \angle A M P=m \angle B M P=90^{\circ}$; thus, triangles $\triangle A M P$ and $\triangle B M P$ are congruent by SAS, and therefore
 $A P \cong B P$.

The notion of a geometric locus can be used to produce fascinating figures and objects; some of the most famous of these are known collectively as the conic sections (circle, ellipse, parabola, hyperbola, pair of lines.).

## 3. Median, Altitude, Angle Bisector

Last week we defined three special lines that can be constructed from any vertex in any triangle; each line goes from a vertex of the triangle to the line containing the triangle's opposite side (altitudes may sometimes land on the opposite side outside of the triangle).
Given a triangle $\triangle A B C$,

- The altitude from $A$ is the line through $A$ perpendicular to $\overleftrightarrow{B C}$
- The median from $A$ is the line from $A$ to the midpoint $D$ of $\overline{B C}$;
- The angle bisector from $A$ is the line $\overleftrightarrow{A E}$ such that $\angle B A E \cong \angle C A E$. Here we let $E$ denote the intersection of the angle bisector with $\overline{B C}$.
The following result is an analog of theorem 14. For a point $P$ and a line $l$, we define the distance from $P$ to $l$ to be the length of the perpendicualr dropped from $P$ to $l$ (see problem 1 in the HW). We say that point $P$ is equidistant from two lines $l, m$ if the distance from $P$ to $l$ is equal to the distance from $P$ to $m$.

Theorem 15. For an angle $A B C$, the locus of points inside the angle which are equidistant from the two sides $B A, B C$ is the ray $\overrightarrow{B D}$ which is the angle bisector of $\angle A B C$.

Proof of this theorem is given as a homework.


## 4. Homework

1. Let $P$ be a point not on line $l$, and $A \in l$ be the base of perpendicular from $P$ to $l: A P \perp l$. Prove that for any other point $B$ on $l, P B>P A$ ("perpendicular is the shortest distance"). Note: you can not use Pythagorean theorem as we have not proved it yet; instead, try using Theorem 11.
2. Suppose $\triangle A B C$ is an isosceles right triangle with right angle $\angle A$. Let $\triangle B C D$ be an isosceles right triangle with right angle $\angle B$ such that $\overline{A D}$ intersects $\overline{B C}$. Prove that $\overline{A E}$ is an altitude of $\triangle A B C$.
3. Let $\triangle A B C$ be a right triangle with right angle $\angle A$, and let $D$ be a point on $\overline{B C}$. Prove that $\triangle A D B$ is isosceles if and only if $\triangle A D C$ is isosceles.
4. Let $\triangle A B C$ be a right triangle with right angle $\angle A$, and let $D$ be the intersection of the line parallel to $\overline{A B}$ through C with the line parallel to $\overline{A C}$ through B .
(a) Prove $\triangle A B C \cong \triangle D C B$
(b) Prove $\triangle A B C \cong \triangle B D A$
(c) Prove that $\overline{A D}$ is a median of $\triangle A B C$.

5. Let $\triangle A B C$ be a right triangle with right angle $\angle A$, and let $D$ be the midpoint of $\overline{B C}$. Prove that $A D=\frac{1}{2} B C$.
6. Let $l_{1}, l_{2}$ be the perpendicular bisectors of side $A B$ and $B C$ respectively of $\triangle A B C$, and let $F$ be the intersection point of $l_{1}$ and $l_{2}$. Prove that then $F$ also lies on the perpendicular bisector of the side $B C$. [Hint: use Theorem 14.]
7. Prove Theorem 15.
8. Let the angle bisectors from $B$ and $C$ in the triangle $\triangle A B C$ intersect each other at point $F$. Prove that $\overleftrightarrow{A F}$ is the third angle bisector of $\triangle A B C$. [Hint: use Theorem 15]
9. Let $\triangle A B C$ be isosceles with $\overline{A B} \cong \overline{A C}$. Let the altitudes from $B$ and $C$ intersect their opposite legs at the points $D$ and $E$ respectively, and let $\overline{B D}, \overline{C E}$ intersect at $F$.
(a) Prove $\angle E B F \cong \angle D C F$
(b) Prove $\triangle D B C \cong \triangle E C B$
(c) Prove $\triangle D C F \cong \triangle E B F$
(d) Prove $\triangle A E F \cong \triangle A D F$
(e) Prove that $\overleftrightarrow{A F}$ is the third altitude of $\triangle A B C$.
10. Given line segments $\overline{O A}$ and $\overline{O B}$ and midpoint $D$ of $\overline{O A}$, prove that a point $E$ on $\overline{O B}$ is the midpoint of $\overline{O B}$ if and only if $\overline{D E} \| \overline{A B}$.

11. Given triangle $\triangle A B C$, let $D, E$ be the midpoints of sides $\overline{A B}, \overline{A C}$ respectively. Prove that $\overline{D E} \| \overline{B C}$ and $D E=\frac{1}{2} B C$. (The line segment $\overline{D E}$ is called the midline of the triangle from A.)
